Lecture 8: Data structures for databases 11

Jose M. Pena

jose.m.pena@liu.se

Database system

Real world 0 A
uc nswer
T O] Model °

Database

Processing of
queries and updates

Access to stored data

2014-11-24

Indexes

Previous lecture: File organization or primary
aCcCesSs meth()d (think in the chapters, sections, etc. of a book).

This lecture: Indexes or secondary access
methOd (think in the index of a book).

Goal: To speed up the primary access method
under certain query conditions.

Primary access method:

Primary indeX Binary search !

Let us assume that the data file is sorted.
Let us assume that the ordering field is a key.

Primary index = sorted file whose records
contain two fields: ,

. Primary access method:
— One of the ordering key values. Binary scarch !
— A pointer to a disk block.

There is one index record for each data

block, and the record contains the ordering key

value of the first record in the data block plus a
pointer to that block.

4

2014-11-24

Primary index

((Andersson, Anders) ‘ J ‘ ‘
. Block 1
IS [P (Andersson, Nis) | [| |
H
E (Andersson, sven) | [|]
H Block 2
K1 = (Andersson, Anders) | P1 = Address of block 1 E iinjerssm, :nde)rs) (Bengtsson, Anders)‘ ‘ ‘ ‘
K2 = (And) P2 = Add f block 2 naersson, sven -
o ‘ersson, Yen) el E e Nil _/ (Davidsson, Nils) ‘ ‘ ‘ ‘
K3 = (Davidsson, Nils) P3 = Address of block 3 M (Davidsson, Nils) .
K4 = (Nilsson, Johan) P4 = Address of block 4 : (Nilsson, Johan)
. (Larsson, Anders) ‘ ‘ ‘ ‘
K5 = (Svensson, Karl) P5 = Address of block 5 : (Svensson, Karl)
(Nilsson, Johan) ‘ J ‘ ‘
Block 4
(Petersson, Jorgen) | [[|

* Why is it faster to access a random record via a
binary search in the index than in the data file ?

e What is the cost of maintaining an index ? If
the order of the data records changes...

Clu Stering index Primary access method:

Binary search !

* Let us assume that the data file is sorted.
» Let us assume that the ordering field is a non-key.
e Clustering index = ordered file whose records
contain two fields: A
— One of the ordering field values. Binary search !
— A pointer to a disk block.
e There is one index record for each distinct
value of the ordering field, and the record

contains the ordering field value plus a pointer to
the first data block where that value appears. s

2014-11-24

Clustering index

Dept# Name ID Salary

Andersson | 12 | 2000
Svensson | 13 | 4000 Block 1

Index Data File

Block 2

} Block 3

Efficiency gain ? Maintenance cost ?

7

|

(SRS EAAT Y

alalalo] |[Mlw[w(N] N2 =

Secondary indexes

Primary access method:
Linear search !

Index on a non-ordering key field.

The data file may be sorted or not.

Secondary index = ordered file whose records
Contain two flelds: T Primary access method:
Binary search !

— One of the non-ordering field values.
— A pointer to a disk record or block.

There is one index record per data record.

2014-11-24

Secondary indexes

Data File
ID# SSN Dept. Salary
1 4945864 | 12| 2000
2 7000111 |13 | 4000 Block 1
2
Index Data File 4
3452626 ~ 5 6487539
4945864 6 7299990 Block 2
5012128 i7: 3452626
6487539 8 9000013
00011 9 8232333
7299990 10
8232333 1 5012128 Block 3
9000013 12

 Efficiency gain ? Maintenance cost ?

e Slower random access than a primary index

on the same field, but higher relative gain

on other fields. Check this claim.

9
. . .
* Index is on a non-ordering non-key field.
Option 1 DataFie 3
©0# Name Dept. Saary :
Dense Index 1 Daniels [12| 2000 . i i
// 2 Lancaster | 13| 4000 % Block 1 : Optlon 3 Data File
// et s B ID# Name
Index Data File // | iz . o . 7 p—
Andersson [/ / p BT e ¢ Level of indirection aniels
Andersson ////f/ 6 Molin % sock2 ¢ With record pointers 2 Lancaster
Andersson 7 7 French s
AR ¥ 50 Dl : 3 Andersson
Daniels /5 [anaersson \ { Index Data File L | A
Hagberg = 1? H:g:e'g Block3 o 5 Sl
Lancaster L Andersson |ef IVET
0000000000000 000000 000000000 00RO . Daniels & 6 MOIIn
Option 2 : French L G
D# Name Dept saay DMTC e 8 Daniels
Repeating field 1 | Daniels [12] 2000 | : LHaQbe{Q &
with pointers. 2 | Lancaster |13 4000 . ancaster (o
/ 5 he P Bloeict - & Andersson
Index Data File 4 | Andersson[| J : e 2 10 Hagberg
Andersson 5 S 1 : " Yang
Daniels |1 o Mok Block2 o s
7| French J' . 12 Miller
French / -
8 Daniels
Hagberg \\\
Lancaster T 9 | Andersson . 10
10 | Hagberg W .
W o Block 3 ¢
12 Miller

2014-11-24

2014-11-24

Multilevel indexes

* Index on index (first level, second level, etc.).

e Works for primary, clustering and secondary
indexes as long as the first level index has a
distinct index value for every entry.

 How many levels ? Until the last level fits in a
single disk block.

 How many disk block accesses to retrieve a
random record ? The number of index levels
plus one.

11

Multilevel indexes

9|14 ejeq

2
5
8
12
15
b1
4]
foo|
35|
36
39|
&
la4]
Jas}
51
52}
55|

\ -
?\\ :
]

 Efficiency gain ? Maintenance cost ? 12

First Level

T EETETs] [=E[8] [Blal=1~]

2014-11-24

Exercise

* Assume an sorted file whose ordering field is a
key. The file has 1000000 records of size 1000
bytes each. The disk block is of size 4096 bytes
(unspanned allocation). The index record is of
size 32 bytes.

 How many disk block accesses are needed to
retrieve a random record when searching for
the key field
— Using no index ?
— Using a primary index ?
— Using a multilevel index ? 1

Dvyvnamic multilevel indexes

* When using a (static) multilevel index,
record insertion, deletion and update may be
expensive operations, because all the index
levels are sorted files.

e Solutions:

— Overflow area + periodic reorganization.

— Empty records + dynamic multilevel indexes,
based on B-trees and B+-trees.

Search trees

e Used to guide the search for a record.
e Generalization of binary search.
* The nodes of a search tree of order p look like

P1 Kl eooe K P. K oo K =]

i-1 ! i g-1 a

*q=p
* P is anode pointer.
* K. is a key value.

Search trees

P‘l K‘l s e K,j_] Pi K;‘ ') Kq_'l Pq
X <K, K., X<k K., <X
pla] - |sdola] - |xfe] Rls] - [xfo]s] -]x]n
Pyl &, K| P |1<.‘ ‘Kg,: Py

1. Within each node, K, <K, < ... <K ;

2. For all values Xin the subtree: K, ; <X <K,

Note the cost of inserting, deleting and updating a record. 1o

2014-11-24

2014-11-24

‘OEE OEE
/X <K, K <X<K| k. <x/
|

T EEEEE EENE R

B-trees °

1. Within each node, X, < K, Byt

2. For all values Xin the subtree: K, < X<K;

e B stands for balanced, i.e. all the leaves are at
the same level. Why is this good ?

* A B-tree of order p is a balanced search tree,
but each K, has associated a pointer Pr; to the
disk record with key value K .» in addition to
the node pointer P, .

e Moreover, each node in a B-tree (except the
root and leaf nodes) has at least H—] node
pointers. 7

B-trees

Order of insertion:

Order p=3 8,5.1,7,3,12,9,6

Andersson
Hagberg
French
Silver
Daniels

 °°H
2 |Young
Zhing

o\ 3e GO[T \Baker

10 7e 8o 012

0 O(=2|W|N|=|01|00

The tree above is actually not a B-tree. Why ? 8
Note the cost of inserting, deleting and updating a record.

2014-11-24

B-trees: Order

Thus, the node pointers are
pointers to disk blocks !!

One node must fit in one block:

B +Precord +K
Pb]ock +Precom’ i

p>Pb[ock +(p _1).(Precord +K) <B= P <

P order, number of block pointer entries in a node
P i size of a block pointer
T size of a record pointer
K size of a search key field
19
B+-trees

e Variation of B-trees. Most commonly used.
Resembles very much a multilevel index.

e Only the leaves have pointers to disk records.
» The leaves contain an entry for every key value.

e The leaves are usually linked to provide ordered
access.

e Of course, B+-trees are balanced.

20

10

B+-trees

Order of insertion:
8,5,1,7,3,12,9;6

order p=3, Piear=2

Andersson

Hagberg

French

Silver

Daniels

2 |Young
Zhing

6 |Baker

e+ ®
— |
OO N|—=|O 00

10 3o0/ew 50 ®r 6o 70|ey 8o ®» 90| 120

21

B+-trees: Internal nodes

e The internal nodes of a B+-tree of order p look
like

R Kl cee K,'_l B K coe K P

i g-1 q

qsp
P is a node pointer.

1

K, is a key value.

Every node (except the root) has at least “;W node
pointers.

22

2014-11-24

11

B+-trees: Internal nodes

- FOEEre FARIRIe
X <K, K. <X<K, K _ <X

g-1

1. Within each node, K} <K, <... <K ;

2. For all values Xin the subtree: K| <X < K]
23

B+-trees: L.eaves

* The leaves of a B+-tree of order p look like

K, P |...| K, [P |..| K, | Pr, | P

1 1 q q

-qsp
— Within the leaf, K, <K, <..<K,

— Pr;is a pointer to the disk record with key
value K, .

— P is a pointer to the disk next leaf.
— The leaf has at least “4} key values.

24

2014-11-24

12

B+-trees

Value — EI — Data pointer

Leaf node ——» I «

t— Leaf node pointer

o Node pointersnr_

Internal node —|
| 0§ * T ?
P, K. | K Ker |
P i
25

Thus, the node

pointers are
pointers to
disk blocks !!

+-trees: Order

One internal node must fit in one block:

B+K
p- b, +w-1)-K<B = p

e
Pb]ock +K

One leaf node must fit in one block:

(P._ +K)+P, <B= < D biook
B leaf (record) block — £ leaf — P

record +K

P order, number of pointer entries in an internal node
Prear

number of record pointer entries in a leaf node
Pioex size of a block pointer
K

size of a search key field
| A— size of a record pointer

26

13

2014-11-24

B+-trees: Retrieval

e Very fast retrieval of a random record. At
worst,
log[p1 N |+1
2

— p is the order of the internal nodes of the B+-tree.
— N is the number of leaves in the B+-tree.

 How would the retrieval proceed ?

 Insertion and deletion can be expensive.

27

B+-trees: Insertion

Insert: 8

28

2014-11-24

14

B+-trees: Insertion

]

Insert: 5
B+-trees: Insertion
I] Overflow — create a new level
Insert: 1

30

2014-11-24

15

B+-trees: Insertion

[+F[sH -

Insert: 7

31

B+-trees: Insertion

3
Overflow - Split m I T I

Insert: 3

32

2014-11-24

16

B+-trees: Insertion

v
[BlsHlf sl [1qLellel

Qverflow - Split

Propagates a new level

Insert: 12

33

B+-trees: Insertion

,///}// .
,//
-
f 3 8
[\
L)
CRGHHGEE R e
Insert: 9

34

2014-11-24

17

B+-trees: Insertion

. \
XS i [EC i (2SI DY

Overflow — Split, propagates

Insert: 6

35

B+-trees: Insertion

le——
o
-
|
/ =
/
/
/ |
4

=]
<]
]
<]
i
&
]
&
]
&
=

Resulting B+-tree

36

2014-11-24

18

2014-11-24

Exercise

* B=4096 bytes, P=16 bytes, K=64 bytes, node
fill percentage=70 %.

e For both B-trees and B+-trees:
— Compute the order p.

— Compute the number of nodes, pointers and key
values in the root, level 1, level 2 and leaves.

— If the results are different for B-trees and B+-trees,
explain why this is so.

37

19

