
2014-11-24

1

1

Lecture 8: Data structures for databases II

Jose M. Peña

jose.m.pena@liu.se

2

Database system
Real world

Model
Query Answer

Database

Physical

database

DBMS
Processing of

queries and updates

Access to stored data

2014-11-24

2

3

Indexes

• Previous lecture: File organization or primary

access method (think in the chapters, sections, etc. of a book).

• This lecture: Indexes or secondary access

method (think in the index of a book).

• Goal: To speed up the primary access method

under certain query conditions.

4

Primary index

• Let us assume that the data file is sorted.

• Let us assume that the ordering field is a key.

• Primary index = sorted file whose records
contain two fields:

– One of the ordering key values.

– A pointer to a disk block.

• There is one index record for each data
block, and the record contains the ordering key
value of the first record in the data block plus a
pointer to that block.

Primary access method:

Binary search !

Primary access method:

Binary search !

2014-11-24

3

5

Primary index

• Why is it faster to access a random record via a

binary search in the index than in the data file ?

• What is the cost of maintaining an index ? If

the order of the data records changes…

6

Clustering index

• Let us assume that the data file is sorted.

• Let us assume that the ordering field is a non-key.

• Clustering index = ordered file whose records
contain two fields:

– One of the ordering field values.

– A pointer to a disk block.

• There is one index record for each distinct
value of the ordering field, and the record
contains the ordering field value plus a pointer to
the first data block where that value appears.

Primary access method:

Binary search !

Primary access method:

Binary search !

2014-11-24

4

7

Clustering index

• Efficiency gain ? Maintenance cost ?

8

Secondary indexes

• Index on a non-ordering key field.

• The data file may be sorted or not.

• Secondary index = ordered file whose records

contain two fields:

– One of the non-ordering field values.

– A pointer to a disk record or block.

• There is one index record per data record.

Primary access method:

Binary search !

Primary access method:

Linear search !

2014-11-24

5

9

Secondary indexes

• Efficiency gain ? Maintenance cost ?

• Slower random access than a primary index
on the same field, but higher relative gain
on other fields. Check this claim.

10

Secondary indexes

• Index is on a non-ordering non-key field.

2014-11-24

6

11

Multilevel indexes

• Index on index (first level, second level, etc.).

• Works for primary, clustering and secondary
indexes as long as the first level index has a
distinct index value for every entry.

• How many levels ? Until the last level fits in a
single disk block.

• How many disk block accesses to retrieve a
random record ? The number of index levels
plus one.

12

Multilevel indexes

• Efficiency gain ? Maintenance cost ?

2014-11-24

7

13

Exercise
• Assume an sorted file whose ordering field is a

key. The file has 1000000 records of size 1000
bytes each. The disk block is of size 4096 bytes
(unspanned allocation). The index record is of
size 32 bytes.

• How many disk block accesses are needed to
retrieve a random record when searching for
the key field
– Using no index ?

– Using a primary index ?

– Using a multilevel index ?

14

Dynamic multilevel indexes

• When using a (static) multilevel index,

record insertion, deletion and update may be

expensive operations, because all the index

levels are sorted files.

• Solutions:

– Overflow area + periodic reorganization.

– Empty records + dynamic multilevel indexes,

based on B-trees and B+-trees.

2014-11-24

8

15

Search trees

• Used to guide the search for a record.

• Generalization of binary search.

• The nodes of a search tree of order p look like

•

• is a node pointer.

• is a key value.

pq ≤

i
P

iK

16

Search trees

Note the cost of inserting, deleting and updating a record.

2014-11-24

9

17

B-trees

• B stands for balanced, i.e. all the leaves are at

the same level. Why is this good ?

• A B-tree of order p is a balanced search tree,

but each has associated a pointer to the

disk record with key value , in addition to

the node pointer .

• Moreover, each node in a B-tree (except the

root and leaf nodes) has at least node

pointers.

iPriK

iK

i
P










2

p

18

B-trees

The tree above is actually not a B-tree. Why ?

Note the cost of inserting, deleting and updating a record.

2014-11-24

10

19

B-trees: Order
Thus, the node pointers are

pointers to disk blocks !!

20

B+-trees

• Variation of B-trees. Most commonly used.
Resembles very much a multilevel index.

• Only the leaves have pointers to disk records.

• The leaves contain an entry for every key value.

• The leaves are usually linked to provide ordered
access.

• Of course, B+-trees are balanced.

2014-11-24

11

21

B+-trees

22

B+-trees: Internal nodes

• The internal nodes of a B+-tree of order p look
like

•

• is a node pointer.

• is a key value.

• Every node (except the root) has at least node
pointers.

pq ≤

i
P

iK










2

p

2014-11-24

12

23

B+-trees: Internal nodes

24

B+-trees: Leaves

• The leaves of a B+-tree of order p look like

–

– Within the leaf,

– is a pointer to the disk record with key
value .

– P is a pointer to the disk next leaf.

– The leaf has at least key values.

P Pr K Pr K Pr K qqii11

pq ≤

q21 K ... K K <<<

iPr

iK










2

p

……

2014-11-24

13

25

B+-trees

26

B+-trees: Order

Thus, the node

pointers are

pointers to

disk blocks !!

2014-11-24

14

27

B+-trees: Retrieval

• Very fast retrieval of a random record. At

worst,

– p is the order of the internal nodes of the B+-tree.

– N is the number of leaves in the B+-tree.

• How would the retrieval proceed ?

• Insertion and deletion can be expensive.

1log
2

+





















N

p

28

B+-trees: Insertion

2014-11-24

15

29

B+-trees: Insertion

30

B+-trees: Insertion

2014-11-24

16

31

B+-trees: Insertion

32

B+-trees: Insertion

2014-11-24

17

33

B+-trees: Insertion

34

B+-trees: Insertion

2014-11-24

18

35

B+-trees: Insertion

36

B+-trees: Insertion

2014-11-24

19

37

Exercise

• B=4096 bytes, P=16 bytes, K=64 bytes, node

fill percentage=70 %.

• For both B-trees and B+-trees:

– Compute the order p.

– Compute the number of nodes, pointers and key

values in the root, level 1, level 2 and leaves.

– If the results are different for B-trees and B+-trees,

explain why this is so.

