
1

1

Lecture 7: Data structures for databases I

Jose M. Peña

jose.m.pena@liu.se

2

Database system

Real world Model
Query Answer

Database

Physical

database

DBMS
Processing of

queries and updates

Access to stored data

2

3

Storage hierarchy

CPU

• Cache memory

• Main memory

• Disk

• Tape

Primary storage
(fast, small, expensive, volatile,

accessible by CPU)

Secondary storage
(slow, big, cheap, permanent,

inaccessible by CPU)

• Important because it affects query efficiency.

Databases

4

Disk
sector

3

5

Disk

• Formatting divides the hard-coded sectors into

equal-sized blocks.

• Block is the unit of transfer of data between

disk and main memory, e.g.

– Read = copy block from disk to buffer in main memory.

– Write = the opposite way.

– R/w time = seek time + rotational delay + block transfer time.

search track search block 1-2 msec.

12-60 msec.

6

Disk

• So, read/write to disk is a bottleneck, i.e.

– Disk access sec.

– Main memory access sec.

– CPU instruction sec.

• Double buffering helps to alleviate it (if several

CPUs or at least a separate disk I/O processor is available).

10
3−

≈

10
8−

≈

10
9−

≈

Fill A Fill B Fill A Fill B

Process A Process B Process A Process B

time

I/O

CPU

4

7

Files and records

• Data stored in files.

• File is a sequence of records.

• Record is a set of field values.

• For instance, file = relation, record = entity,

and field = attribute.

• Records are allocated to file blocks.

8

Files and records

• Let us assume

– B is the size in bytes of the block.

– R is the size in bytes of the record.

– r is the number of records in the

file.

• Blocking factor, i.e. number of

recors per block:

• Blocks needed to store the file:

• What is the space wasted per

block ?







=

R

B
bfr









=

bfr

r
b

5

9

Files and records

• Wasted space per block = B – bfr * R.

• Solution: Spanned records.

block i record 1 record 2 wasted

block i record 1 record 2 record 3 p

block i+1 record 3 record 4 record 5

block i+1 record 3 record 5 wasted
Unspanned

Spanned

10

File allocation

• How to allocate file blocks to disk blocks.

• Contiguous allocation: The file blocks are allocated

one after another in disk. Then, cheap sequential

access but expensive record addition.

• Linked allocation: The file blocks are allocated in a

linked list of disk blocks. Then, expensive sequential

access but cheap record addition.

• Linked clusters allocation. Hybrid of the two above.

• Indexed allocation.

6

11

File organization

• How the records are arranged in the file.

• Heap files.

• Sorted files.

• Hash files.

• File organization != access method, although

it determines the primary access method.

12

Heap files
• Records are added to the end of the file. Hence,

– Cheap record addition.

– Expensive record retrieval, removal and update, since
they imply linear search:

• Average case: block accesses.

• Worst case: b block accesses.

– Moreover, record removal implies waste of space. So,
periodic reorganization.

• Heap file, contiguous allocation, and unspanned
blocks. What is the disk block and record of the i-
th file record?










2

b

7

13

Sorted files

• Records ordered according to some field. So,

– Cheap ordered record retrieval (on the ordering
field, otherwise expensive):

• All the records: Access the blocks sequentially.

• Next record: Probably in the same block.

• Random record: Binary search, then worst case implies
block accesses.

– Expensive record addition, but less expensive
record deletion (deletion markers + periodic
reorganization).

• Is record updating cheap or expensive ?

 b2log

14

Internal hash files

• The hash function is applied to the hash
field and returns the position of the record
in the file. E.g.

position = field mod r

• Collision: different field values hash to the
same position. Solutions:

– Check subsequent positions until one is empty.

– Use a second hash function.

– Put the record in the overflow area and link it.

8

15

External hash files

• The hash function returns a bucket number,
where a bucket is one or several contiguous
disk blocks. A table converts the bucket
number into a disk block address.

• Collisions are typically resolved via overflow
area.

• Cheapest random record retrieval (when
searching for equality).

• Expensive ordered record retrieval.

• Is record updating cheap or expensive ?

