
1

How can several users access and
update the information at the

same time?

Real world
results Model

Database
system

Physical
database

Database
management
system

Processing of
Queries/updates

Access to stored data

2

Single user system
vs multiple user system

• Single user system: at most 1 user can use
the system at each point in time

• Multiple user system: several users can use
the system at the same time
– multiple CPU: parallel processing

– one CPU: interleaving

3

Transactions

4

Transactions

• A transaction is a logical unit of database
processing and consists of one or several
operations.

• Database operations in a simplified model:
– read-item(X)

– write-item(X)

5

Transactions - examples

T1 T2

Read-item(my-account)

my-account := my-account - 2000

Write-item(my-account)

Read-item(other-account)

other-account := other-account + 2000

Write-item(other-account)

Read-item(my-account)

my-account := my-account +1000

Write-item(my-account)

6

Transactions

• Q: How to execute a read-item and a write-
item?

• Note: more about buffers in the next lecture.

7

Read-item(X)

• Locate the block on disk that contains X

• Copy the block to primary memory (a
buffer)

• Copy X from the buffer to program
variable X.

8

Write-item(X)

1. Locate the block on disk that contains X

2. Copy the block to primary memory (a
buffer)

3. Copy the value of program variable X to
the right place in the buffer

4. Store the modified block on disk.

9

Schedule

• A schedule defines the order between the
operations in the different transactions.

10

Schedule - example

T1 T2

Read-item(my-account)

my-account := my-account - 2000

Write-item(my-account)

Read-item(other-account)

Other-account := other-account + 2000

Write-item(other-account)

Read-item(my-account)

my-account := my-account +1000

Write-item(my-account)

TIME

11

Lost update problem

T1 T2

Read-item(my-account)

my-account := my-account - 2000

Write-item(my-account)

Read-item(other-account)

Other-account := other-account + 2000

Write-item(other-account)

Read-item(my-account)

my-account := my-account +1000

Write-item(my-account)

TIME

12

Dirty read problem

T1 T2

Read-item(my-account)

my-account := my-account - 2000

Write-item(my-account)

Read-item(other-account)

FAIL

Read-item(my-account)

my-account := my-account +1000

Write-item(my-account)

TIME

13

Incorrect summary problem

T1 T2

Read-item(my-account1)

my-account1 := my-account1 - 2000

Write-item(my-account1)
Read-item(my-account1)

sum := sum + my-account1

TIME

Read-item(my-account2)

my-account2 := my-account2 + 2000

Write-item(my-account2)

Read-item(my-account2)

sum := sum + my-account2

sum := 0

14

Unrepeatable read problem

T1 T2

Read-item(my-account)

Read-item(my-account)

my-account:= my-account + 1000

TIME

Read-item(my-account)

Write-item(my-account)

15

Properties for transactions

ACID: Atomicity, Consistency preservation,
Isolation, Durability

• A: A transaction is an atomic unit: it is either
executed completely or not at all

• C: A database that is in a consistent state before
the execution of a transaction (i.e. it fulfills the
conditions in the schema and other conditions
declared for the database), is also in a consistent
state after the execution.

16

Properties for transactions

ACID: Atomicity, Consistency
preservation, Isolation, Durability

• I: A transaction should act as if it is
executed isolated from other transactions.

• D: Changes in the database made by a
committed transaction are permanent.

17

Properties for transactions

How are the ACID properties achieved?

• A: recovery system

• C: programmer + DBMS

• I: concurrency contol

• D: recovery system

18

Concurrency control
(Isolation)

19

Serial and serializable schedules

• A schedule S is serial if the operations in
every transaction T are executed directly
after each other

perfect with respect to isolation, but …

• A schedule S is serializable if there is an
equivalent serial schedule S’

Equivalent: conflict-equivalent.

20

Transactions

T1 T2

Read-item(my-account)

my-account := my-account - 2000

Write-item(my-account)

Read-item(other-account)

other-account := other-account + 2000

Write-item(other-account)

Read-item(my-account)

my-account := my-account +1000

Write-item(my-account)

1

2

3

4

5

6

21

Serial schedule

T1 T2

Read-item(my-account)

my-account := my-account - 2000

Write-item(my-account)

Read-item(other-account)

other-account := other-account + 2000

Write-item(other-account)

Read-item(my-account)

my-account := my-account +1000

Write-item(my-account)

TIME

1

2

3

4

22

Serial schedule

T1 T2

Read-item(my-account)

my-account := my-account - 2000

Write-item(my-account)

Read-item(other-account)

other-account := other-account + 2000

Write-item(other-account)

Read-item(my-account)

my-account := my-account +1000

Write-item(my-account)

TIME

1

2

3

4

23

Conflicts

• Two operations are in conflict if:
– they belong to different transactions

– they access (read/write) the same data X

– one of the operations is a write-item(X)

24

Conflict-equivalence

• Two schedules S and S’ are conflict-
equivalent if the order of any two
conflicting operations is the same in both
schedules.

• In a (conflict) serializable schedule it is
possible to reorder the operations that are in
conflict until one gets a serial schedule.

25

Serializable schedule

T1 T2

Read-item(my-account)

my-account := my-account - 2000

Write-item(my-account)

other-account := other-account + 2000

Read-item(other-account)

Write-item(other-account)

Read-item(my-account)

my-account := my-account +1000

Write-item(my-account)

TIME

1

2

3

4

26

Not serializable schedule

T1 T2

Read-item(my-account)

My-account := my-account - 2000

Write-item(my-account)

Read-item(other-account)

Other-account := other-account + 2000

Write-item(other-account)

Read-item(my-account)

My-account := my-account +1000

Write-item(my-account)

TIME

1

2

3

4

27

Algorithm: Serializability test

With a directed graph:

1. Create a node for each transaction

2. If Tj executes a read-item(X) after Ti
executes a write-item(X),

create an arch Ti Tj

3. If Tj executes a write-item(X) after Ti
executes a read-item(X),

create an arch Ti Tj 28

Algorithm: Serializability test

4. If Tj executes a write-item(X) after Ti
executes a write-item(X),

create an arch Ti Tj

5. S is serializable if the graf does not contain
any cycles.

29

Algorithm: Serializability test

With a directed graph:

1. Create a node for each transaction

2-4. for each pair of operations in conflict,
create an arch Tfirst Tlast

5. S is serializable if the graf does not contain
any cycles.

30

Serializable schedule

T1 T2

Read-item(my-account)

my-account := my-account - 2000

Write-item(my-account)

other-account := other-account + 2000

Read-item(other-account)

Write-item(other-account)

Read-item(my-account)

my-account := my-account +1000

Write-item(my-account)

TIME

1

2

3

4

31

Not serializable schedule

T1 T2

Read-item(my-account)

My-account := my-account - 2000

Write-item(my-account)

Read-item(other-account)

Other-account := other-account + 2000

Write-item(other-account)

Read-item(my-account)

My-account := my-account +1000

Write-item(my-account)

TIME

1

2

3

4

32

• Can we make sure that we only get
serializable schedules?

33

Locking

• Locking: to control access to data
• Shared/Exclusive lock or read/write lock

– read-lock(X) (shared lock)
• If X is unlocked or locked by a shared lock, lock it,

otherwise wait until it is possible to lock it

– write-lock(X) (exclusive lock)
• If X is unlocked, lock it, otherwise wait until X is

unlocked

– unlock(X).

34

Shared/Exclusive locking

1. A transaction T should lock X with a read-lock(X)
or a write-lock(X) before executing a read-
item(X).

2. A transaction T should lock X with a write-
lock(X) before executing a write-item(X).

3. A transaction T should unlock X with a unlock(X)
after all read-item(X) and write-item(X) in T have
been executed.

35

Shared/Exclusive locking

4. A transaction T should not use a read-lock(X) if it
already has a read or write lock on X.

5. A transaction T should not use a write-lock(X) if
it already has a read or write lock on X.

4 and 5 can sometimes be replaced by up- and
downgrading of locks.

36

Two-phase locking

• A transaction follows the two-phase locking
protocol if all locking operations (read-lock
and write-lock) for all data items come
before the first unlock operation in the
transaction

• A transaction that follows the two-phase
locking protocol has an expansion phase
and a shrinking phase.

37

Two-phase locking – allowed
transactions?

T1

Read-item(my-account1)

Write-lock(my-account2)

Unlock(my-account1)

Read-item(my-account2)

my-account2 := my-account2 + 2000

Write-item(my-account2)

Read-lock(my-account1)

Unlock(my-account2)

T2

Read-item(my-account1)

Write-lock(my-account2)

Unlock(my-account1)

Read-item(my-account2)

my-account2 := my-account2 + 2000

Write-item(my-account2)

Read-lock(my-account1)

Unlock(my-account2)

38

Serializability through
two-phase locking

• If all transactions follow the two-phase
locking protocol then the schedule is
serializable.

39

Deadlock

• Two or more transactions wait for each
other to get data unlocked

• Deadlock prevention:

- lock all data beforehand, wait-die, wound-
wait, no waiting, cautious waiting

• Deadlock detection: wait-for graph,
timeouts

40

Deadlock
T1

Write-lock(my-account1)

Write-lock(my-account2)

T2

Write-lock(my-account2)

Write-lock(my-account1)

TIME

41

Starvation

• A transaction is not executed for an
indefinite period of time while other
transactions are executed normally

