Functional Dependencies and Normalization

Jose M. Peña
jospe@ida.liu.se

* slides kindly provided by Vaida Jakonienė

Overview

Good Design

- Can we be sure that a translation from EER-diagram to relational tables results in good database design?
- Confronted with a deployed database, how can we be sure that it is well-designed?
- What is good database design?
\square Four informal measures
\square Formal measure: normalization

Informal design guideline

- Easy to explain semantics of the relation schema
- Reducing redundant information in tuples

Redundancy causes update anomalies:
\square Insertion anomalies
\square Deletion anomalies
\square Modification anomalies

EMP(EMPID,	EMPNAME,	DEPTNAME,	DEPTMGR)
123	Smith	Research	999	
333	Wong	Research	999	
888	Borg	Administration	null	

Informal design guideline

- Reducing NULL values in tuples

Why
\square Efficient use of space
\square Avoid costly outer joins
\square Ambiguous interpretation (unknown vs. doesn't apply).

- Disallow the possibility of generating spurious tuples
\square Figures 10.5 and 10.6: cartesian product results in incorrect tuples
\square Only join on foreign key/primary key-attributes
\square Lossless join property: guarantees that the spurious tuple generation problem does not occur

Functional dependencies (FD)

- Let R be a relational schema with the attributes A_{1}, \ldots, A_{n} and let X and Y be subsets of $\left\{A_{1}, \ldots, A_{n}\right\}$.
- Let $r(R)$ denote a relation in relational schema R.

We say that X functionally determines Y ,

$$
\mathrm{X} \rightarrow \mathrm{Y}
$$

if for each pair of tuples $t_{1}, t_{2} \in r(R)$ and for all relations in $r(R)$: If $\mathrm{t}_{1}[\mathrm{X}]=\mathrm{t}_{2}[\mathrm{X}]$ then we must also have $\mathrm{t}_{1}[\mathrm{Y}]=\mathrm{t}_{2}[\mathrm{Y}]$

- Despite the mathematical definition an FD cannot be determined automatically. It is a property of the semantics of attributes.

Inference rules

1. If $X \supseteq Y$ then $X \rightarrow Y$, or $X \rightarrow X$ (reflexive rule)
2. $X \rightarrow Y \mid=X Z \rightarrow Y Z$ (augmentation rule)
3. $X \rightarrow Y, Y \rightarrow Z \mid=X \rightarrow Z$ (transitive rule)
4. $\mathrm{X} \rightarrow \mathrm{YZ} \mid=\mathrm{X} \rightarrow \mathrm{Y}$ (decomposition rule)
5. $X \rightarrow Y, X \rightarrow Z \mid=X \rightarrow Y Z$ (union or additive rule)
6. $\mathrm{X} \rightarrow \mathrm{Y}, \mathrm{WY} \rightarrow \mathrm{Z} \mid=\mathrm{WX} \rightarrow \mathrm{Z}$ (pseudotransitive rule)

Inference rules

- Textbook, page 341:
$" \ldots X \rightarrow A$, and $Y \rightarrow B$ does not imply that $X Y \rightarrow A B$."
Prove that this statement is wrong.
- Prove inference rules 4,5 and 6 by using only inference rules 1, 2 and 3 .

Definitions

- Superkey: a set of attributes uniquely (but not minimally!) identifying a tuple of a relation.
- Key: A set of attributes that uniquely and minimally identifies a tuple of a relation.
- Candidate key: If there is more than one key in a relation, the keys are called candidate keys.
- Primary key: One candidate key is chosen to be the primary key.
- Prime attribute: An attribute \boldsymbol{A} that is part of a candidate key \boldsymbol{X} (vs. nonprime attribute)

Normal Forms

- 1NF, 2NF, 3NF, BCNF (4NF, 5NF)
- Minimize redundancy

- Minimize update anomalies

- Normal form $\uparrow=$ redundancy and update anomalies \downarrow and relations become smaller.
- Join operation to recover original relations.

1NF

- 1NF: The relation should have no non-atomic values.

$\mathbf{R}_{\text {non1NF }}$		
$\underline{I D}$	Name	LivesIn
$\underline{100}$	Pettersson	$\{$ Stockholm, Linköping $\}$
$\underline{101}$	Andersson	$\{$ Linköping $\}$
$\underline{102}$	Svensson	$\{$ Ystad, Hjo, Berlin $\}$

$\mathbf{R 1}_{\text {1NF }}$
$\underline{\text { ID }}$
Name
100

2NF

- 2NF: no nonprime attribute should be functionally dependent on a part of a candidate key (= partial dependency).
$\mathrm{R}_{\text {non2NF }}$

EmpID	Dept	Work\%	EmpName
$\underline{100}$	Dev	50	Baker
$\underline{100}$	$\underline{\text { Support }}$	50	Baker
$\underline{200}$	$\underline{\text { Dev }}$	80	Miller

13

2NF

- No 2NF: A part of a candidate key can have repeated values in the relation and, thus, so can have the nonprime attribute, i.e. redundancy + insertion and modification anomalies.
- An FD $X \rightarrow Y$ is a full functional dependency (FFD) if removal of any attribute A_{i} from X means that the dependency does not hold any more.
- 2NF: Every nonprime attribute is fully functionally dependent on every candidate key.

3NF

- 3NF: 2NF + no nonprime attribute should be functionally dependent on a set of nonprime attributes

$\mathbf{R}_{\text {non3NF }}$			
$\underline{\text { ID }}$	Name	Zip	City
$\underline{100}$	Andersson	58214	Linköping
$\underline{101}$	Björk	10223	Stockholm
$\underline{102}$	Carlsson	58214	Linköping

\Rightarrow	R1 ${ }_{\text {3NF }}$			R2 ${ }_{3 \text { 3F }}$	
Normalization	ID	Name	Zip	Zip	City
	100	Andersson	58214	58214	Linköping
	$\underline{101}$	Björk	10223	10223	Stockholm
	102	Carlsson	58214		

3NF

- No 3NF (but 2NF): A set of nonprime attributes can have repeated values in the relation and, thus, so can have the nonprime attribute, i.e. redundancy + insertion and modification anomalies.
- An FD $X \rightarrow Y$ is a transitive dependency if there is a set of nonprime attributes Z such that both $X \rightarrow Z$ and $Z \rightarrow Y$ hold.
- 3NF: 2NF + no nonprime attribute is transitively dependent on any candidate key.

Little summary

$X \rightarrow A$

2 NF and 3 NF do nothing if A is prime.
Assume A is nonprime.
$2 N F=$ decompose if X is part of a candidate key.
3NF = decompose if X is part of a candidate key
or X is nonprime, i.e. if $\mathrm{X} \rightarrow \mathrm{A}$ is partial or
transitive.
$3 \mathrm{NF}=\mathrm{X}$ is a superkey or A is prime.
Should A be discriminated for being prime ?

Boyce-Codd Normal Form

- BCNF: Every determinant is a superkey (in practice: every determinant is a candidate key)
- BCNF = decompose if $X \rightarrow A$ is such that X is not a superkey and A is a prime attribute.
- Example: Given $R(\underline{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})$ and $A B \rightarrow C D, C \rightarrow B$. Then R is in 3NF but not in BCNF
$\square \mathrm{C}$ is a determinant but not a superkey (tuples are not uniquely identified in R)

BCNF: Example

At a gym, an instructor is leading an activity in a certain room at a certain time.
$\mathrm{R}_{\text {nonbcin }}$

Time	Room	Instructor	Activity
Mon 17.00	Gym	Tina	IronWoman
Mon 17.00	Mirrors	Anna	Aerobics
Tue 17.00	Gym	Tina	Intro
Tue 17.00	Mirrors	Anna	Aerobics
Wed 18.00	Gym	Anna	IronWoman

Normalization: Example

Given universal relation
R(PID, PersonNamn, Land, Kontinent, KontinentYta, AntalBesökILandet)

■ Functional dependencies?

- Keys?

Properties of decomposition

- Keep all attributes from the universal relation R.
- Preserve the identified functional dependencies.
- Lossless join
\square It must be possible to join the smaller tables to arrive at composite information without spurious tuples.

Normalization: Example

PID \rightarrow PersonNamn
PID, Land \rightarrow AntalBesökILande \dagger
Land \rightarrow Kontinent
Kontinent \rightarrow KontinentYta

- Based on FDs, what are keys for R?
- Use inference rules

Normalization: Example

```
Land }->\mathrm{ Kontinent, Kontinent }->\mathrm{ KontinentYta,
    then
Land }->\mathrm{ Kontinent, KontinentYta (transitive rule)
PID, Land }->\mathrm{ Kontinent, KontinentYta (augmentation rule),
PID, Land }->\mathrm{ PersonNamn (augmentation rule),
PID, Land }->\mathrm{ AntalBesökILandet,
    then
PID, Land }->\mathrm{ Kontinent, KontinentYta, PersonNamn,
    AntalBesökILandet (additive rule)
```

Person, Land is the key for R.

Normalization: Example

Is
R (PID, Land, Kontinent, KontinentYta, PersonNamn, AntalBesökILandet) in 2NF?
No, PersonNamn depends on a part of the key (PID), then R1(PID, PersonNamn)
R2(PID, Land, Kontinent, KontinentYta, AntalBesökILandet)

Is R2 in 2NF?
No, Kontinent and Kontinentyta depend on a part of the key (Land), then R1(PID, PersonNamn)
R21(Land, Kontinent, KontinentYta) R22(PID, Land, AntalBesökILandet) \rightarrow R1, R21, R22 are in 2NF

Are R1, R21, R22 in 3NF?

R22(PID, Land, AntalBesökILandet),
R1 (PID, PersonNamn):
Yes, a single nonprime attribute, no transitive dependencies.

R21(Land, Kontinent, KontinentYta):
No, Kontinent defines KontinentYta, then
R211(Land, Kontinent)
R212(Kontinent, KontinentYta)
\rightarrow R1, R22, R211, R212 are in 3NF

Are R1, R22, R211, R212 in BCNF?

BCNF: Every determinant is a superkey

R22(PID, Land, AntalBesökILandet),
R1(PID, PersonNamn):
R211(Land, Kontinent)
R212(Kontinent, KontinentYta)
\rightarrow Yes (don't be confused by candidate keys!)
Can the universal relation R be reproduced from $R 1, R 22$,
R211 and R212 without spurious tuples?

Summary and onen issues

- Good desigr relations
- Functiona forms, are world knol automated
- Are high nomish aito alecioces when it comes to pefforratim
\square No, denormalization may be required.

1. Which normal form?

- The database contains data about cars, their owners and when the car was registered for that owner.

PersonID	FirstName	LastName	LicensePlate	RegistrationDate	Birthdate
1000	Ann	Anderson	ABC123	$2004-10-12$	$1981-04-04$
1010	Ben	Benson	DEF234	$2003-02-12$	$1945-12-12$
1000	Ann	Anderson	ABC123	$2001-04-23$	$1981-04-04$

2. Which normal form?

- A database contains data about registered cars and their make (type).

LicensePlate	Type	Maker
ABC123	C70	Volvo
DEF234	S40	Volvo
FGH345	Corolla	Toyota

3. Which normal form?

- The database contains data about flights, aircrafts and their pilots. Flights use different aircrafts depending on the number of booked passengers.

Date	Flight	Aircraft	Pilot
13-Jan-2005	TGU7	Airbus 300	John
14-Jan-2005	TGU7	Boeing 747	Daniel
12-Jan-2005	SKX6	Airbus 300	John
13-Jan-2005	SKX6	Boeing 747	Ann
14-Jan-2005	SKX6	Fokker 50	Mary

