

Good Design

- Can we be sure that a translation from EER-diagram to relational tables results in good database design?
- Confronted with a deployed database, how can we be sure that it is well-designed?
- What is good database design? Four informal measures Formal measure: normalization

Informal design guideline

- Easy to explain semantics of the relation schema
- Reducing redundant information in tuples Redundancy causes update anomalies:
 - Insertion anomalies
 - Deletion anomalies
 - Modification anomalies

EMP(EMPID
	123
	333
	888

EMPNAME. Smith Wong Borg

Research

Research

DEPTNAME. DEPTMGR) 999 999 Administration null

6

Informal design guideline

- Sometimes, it may be desirable to have redundancy to gain in runtime, i.e. trade space for time.
- In that case and to avoid update anomalies
 - either, use triggers or stored procedures to update the base tables
 - □ or, keep the base tables free of redundancy and use views (assuming that the views are materialized). 5

Informal design guideline

- Reducing NULL values in tuples Why
 - □ Efficient use of space
 - Avoid costly outer joins
 - □ Ambiguous interpretation (unknown vs. doesn't apply).
- Disallow the possibility of generating spurious tuples
 - □ Figures 10.5 and 10.6: cartesian product results in incorrect tuples
 - Only join on foreign key/primary key-attributes
 - Lossless join property: guarantees that the spurious tuple generation problem does not occur

2NF

 2NF: no nonprime attribute should be functionally dependent on a part of a candidate key (= partial dependency).

"non2NF								
EmpID	<u>Dept</u>	Work	«% Em	npName				
<u>100</u>	<u>Dev</u>	50	Ba	ker				
<u>100</u>	<u>Support</u>	50	Ba	ker				
<u>200</u>	<u>Dev</u>	80	Mil	ler				
						R2 _{2N}		
		R1 _{2NF}				<u>EmplD</u>	<u>Dept</u>	Work%
Normalization		2	EmplD	EmpNam	1e	<u>100</u>	<u>Dev</u>	50
			<u>100</u>	Baker		<u>100</u>	Support	50
		2	200	Miller		<u>200</u>	<u>Dev</u>	80

3NF

 3NF: 2NF + no nonprime attribute should be functionally dependent on a set of nonprime attributes

R2_{3NF}

58214 Linköping

10223 Stockholm

15

R _{non3NF}							
<u>ID</u>	Name						
<u>100</u>	Andersson	58214	Linköping				
<u>101</u>	Björk	Stockholm					
102	Carlsson						
R1 _{3NF}							
Norm	alization	<u>ID</u>	Name	Zip			
		<u>100</u>	Andersson	58214			
			Björk	10223			
		102	Carlsson	58214			

Little summary

 $X \rightarrow A$

- 2NF and 3NF do nothing if A is prime.
- Assume A is nonprime.
- 2NF = decompose if X is part of a candidate key.
- 3NF = decompose if X is part of a candidate key or X is nonprime, i.e. if X → A is partial or transitive.
- 3NF = X is a superkey or A is prime.
- Should A be discriminated for being prime ?

2NF

- No 2NF: A part of a candidate key can have repeated values in the relation and, thus, so can have the nonprime attribute, i.e. redundancy + insertion and modification anomalies.
- An FD X→Y is a full functional dependency (FFD) if removal of any attribute A_i from X means that the dependency does not hold any more.
- 2NF: Every nonprime attribute is fully functionally dependent on every candidate key.

3NF

- No 3NF (but 2NF): A set of nonprime attributes can have repeated values in the relation and, thus, so can have the nonprime attribute, i.e. redundancy + insertion and modification anomalies.
- An FD X→Y is a transitive dependency if there is a set of nonprime attributes Z such that both X→Z and Z→Y hold.
- 3NF: 2NF + no nonprime attribute is transitively dependent on any candidate key.

Boyce-Codd Normal Form

- BCNF: Every determinant is a superkey (in practice: every determinant is a candidate key)
- BCNF = decompose if X → A is such that X is not a superkey and A is a prime attribute.
- Example: Given R(<u>A,B</u>,C,D) and AB→CD, C→B. Then R is in 3NF but not in BCNF
 C is a determinant but not a superkey (tuples are not uniquely identified in R)

14

16

_				N ²
BCNF:	Examp	ble		Properties of decomposition
At a gym, a	n instruct	or is leading (an activity in a	
		n at a certain	•	Keep all attributes from the universal relation R.
Time	Room	Instructor	Activity	 Preserve the identified functional
Mon 17.00	Gym	Tina	IronWoman	dependencies.
Mon 17.00	Mirrors	Anna	Aerobics	■ Lossless join
Tue 17.00	Gym	Tina	Intro	□ It must be possible to join the smaller tables
Tue 17.00	Mirrors	Anna	Aerobics	to arrive at composite information without
Wed 18.00	Gym	Anna	IronWoman	spurious tuples.
_				
Normaliz	ation: E	xample		Normalization: Example
i torrianz		ampio		
Given univ	Given universal relation			PID → PersonNamn
				PID, Land → AntalBesökILandet
	R(PID, PersonNamn,			Land → Kontinent
Land, Ko AntalBes	ntinent, l ökILande	KontinentYta t)	,	Kontinent → KontinentYta
FunctionKeys?	nal depen	dencies?		Based on FDs, what are keys for R?Use inference rules
_			21	
Normal	ization	: Exampl	Ω	Normalization: Example
normal	ιζαιιθΠ	. слаттрі	C	•
Land → Kontiner	nt, Kontinent →	• KontinentYta,		ls R (<u>PID, Land</u> , Kontinent, KontinentYta, PersonNamn, AntalBesökILan
then Land → Kontin	ent, Kontinen	tYta (transitive rule)		in 2NF? No, <i>PersonNamn</i> depends on a part of the key (<i>PID</i>), then
				R1(<u>PID</u> , PersonNamn)
PID, Land $\rightarrow k$	Continent, Ko	ntinentYta (augmen	tation rule),	R2(PID, Land, Kontinent, KontinentYta, AntalBesökILandet)

PID, Land \rightarrow **PersonNamn** (augmentation rule), PID, Land → AntalBesökILandet, then PID, Land → Kontinent, KontinentYta, PersonNamn, AntalBesökILandet (additive rule)

Person, Land is the key for R.

23

Is R2 in 2NF? No, Kontinent and KontinentYta depend on a part of the key (Land), then R1(<u>PID</u>, PersonNamn)

R21(<u>Land</u>, Kontinent, KontinentYta) R22(PID, Land, AntalBesökILandet) → R1, R21, R22 are in 2NF

2NF: *no nonprime attribute* should be functionally dependent on a *part* of a candidate key.

2. Which normal form?

 A database contains data about registered cars and their make (type).

LicensePlate	Туре	Maker
ABC123	C70	Volvo
DEF234	S40	Volvo
FGH345	Corolla	Toyota

3. Which normal form?

 The database contains data about flights, aircrafts and their pilots. Flights use different aircrafts depending on the number of booked passengers.

<u>Date</u>	<u>Flight</u>	Aircraft	Pilot
13-Jan-2005	TGU7	Airbus 300	John
14-Jan-2005	TGU7	Boeing 747	Daniel
12-Jan-2005	SKX6	Airbus 300	John
13-Jan-2005	SKX6	Boeing 747	Ann
14-Jan-2005	SKX6	Fokker 50	Mary