Database Technology
Indexing

Fang Wei-Kleiner

4}5 Linkdping University S IDA/ADIT

Files and records

e Letus assume
o Bis the size in bytes of the block.
o Ris the size in bytes of the record.
o ris the number of records in the file.

* Blocking factor (number of
records in each block):

ol

* Blocks needed for the file: \-\
el

bfr

A& Linkoping University 3 IDA/ADIT

Primary index

* Let us assume that the ordering field is a key.
* Primary index = ordered file whose records contain two
fields:
o One of the ordering key values. binary search !
o A pointer to a disk block.
* There is one record for each data block, and the record
contains the ordering key value of the first record in the
data block plus a pointer to the block.

% Linkdping University g = IDA/ADIT

Primary index

Andersson, Anders)| | | |
= = Block 1
(& [ [andersson, Nis) | [ [ |
sliandersson, sven) | [ | | | )
: Block 2
K1 = (Andersson, Anders) | P1= Address of block 1 H [[Andersson, Anders) [Bengtsson, Anders)] | [ |
K2 = (Andersson, Sven) | P2 = Address of block 2 H [(Andersson, Sven) »
: f"|iDavidsson, Nis) | | | |
K3 = (Davidsson, Nis) | P3 = Adress of bock3 | |(Davidsson, Nis) .
K4 = (Nilsson, Johan) P4 = Address of block 4 H [(Nilsson, Johan) ) J
K5 = (Svensson, Karl) | P5 = Address of block 5 : [iSvensson, Karl) \;UJL
: [(Nilsson, Johan)
: Block4
Petersson, vorgen) | | | |

* Why is it faster to access a random record via a
binary search in index than in the file ?

* What is the cost of maintaining an index? If the
order of the data records changes...

% Linkdping University = IDA/ADIT

Primary Index
* Bis the size in bytes of the block.
* Iis the size in bytes of the index.

* xis the number of index entries
(for primary index x=b).
* Blocking factor index:

B
=]

* Blocks needed for the file:

bi = [il 5\/
bfr, bi

A& Linkoping University Eae s IDA/ADIT

Exercise

» Assume an ordered file whose ordering field is a key. The
file has 1000000 records of size 1000 bytes each. The disk
block is of size 4096 bytes (unspanned allocation). The
index record is of size 32 bytes.

* How many disk block accesses are needed to retrieve a
random record when searching for the key field

o Using no index ?
o Using a primary index ?

A& Linkoping University Eae IDA/ADIT




Primary index

* What is the cost for maintaining a primary index?
* Insert
* Delete

» Update

IDA/ADIT

Clustering index

* Now, the ordering field is a non-key.

* Clustering index = ordered file whose records contain
two fields:

o One of the ordering field values.\. binary search !

o A pointer to a disk block.

* There is one record for each distinct value of the
ordering field, and the record contains the ordering
field value plus a pointer to the first data block where
that value appears.

IDA/ADIT

Clustering index

Deptt  Name 1D Salary

1| Andersson [ 12] 2000
Svensson | 13| 4000 Sock 1
Index Data File /
} Block 2
} Block 3

EYINRIN
EN| Y YINY [ VY NN

oo oo

* Efficiency gain ? Maintenance cost ?

% Linkdping University = : IDA/ADIT

Secondary indexes

* The index is now on a non-ordering field.
* Let us assume that that is a key.
* Secondary index = ordered file whose records contain

two fields:
o One of the non-ordering field values. binary search !
o A pointer to a disk record or block.

* There is one record per data record.

University * IDA/ADIT

Secondary indexes

Data File

D% SSN Dept. Salary
41 | 4945864 [12] 2000
/12 [ 7000111 [13] 4000 Bl
3
/
Index Data File / 4
3452626 3 5 | 6487539
4945864 6 | 7299990 —
5012128 | < 7 | 3452626
_b4g7539 | 7 8 | 9000013
7000111
9 [ 8232333
7299990 /- o
8232333 i Block 3
9000013 :; 21z

* Efficiency gain ? Maintenance cost ?

Secondary indexes

* Now, the index is on a non-ordering and non-key
field.

Option 1 108 Name Dut_sawy OFeFle .
Dense Index {1 [ Domes T2 20m0 | | Option 3 Deits File
ID# Name
Level of indirection i Daniels
with record pointers 2 | Lancaster
3| Andersson
Index Data File 4 | Andersson
Andersson 5 Silver
Daness |7 //E N RGBT
Francale— 7 | French
e | 8 | Daniels
Lancaster
~~—_ {9 [Andersson
i ™ 10 | Hagberg
1 Yang
12 Miller

IDA/ADIT

A& Linkoping University = e IDAJADIT




Multilevel indexes

* Index on index (first level, second level, etc.).

» Works for primary, clustering and secondary indexes as
long as the first level index has a distinct index value
for every entry.

* How many levels ? Until the last level fits in a single
disk block.

* How many disk block accesses to retrieve a random
record?

Multilevel indexes

/” ! 4
+

=Tie

|14 e)EQ

First Level

T el [oleleTe
~

* Efficiency gain ? Maintenance cost ?

A& Linkoping University T IDA/ADIT

4% Linkoping University : IDA/ADIT

Exercise

* Assume an ordered file whose ordering field is a key. The
file has 1000000 records of size 1000 bytes each. The disk
block is of size 4096 bytes (unspanned allocation). The
index record is of size 32 bytes.

* How many disk block accesses are needed to retrieve a
random record when searching for the non-ordering key
field

o Using no index ?
o Using a secondary index ?
o Using a multilevel index ?

Dynamic multilevel indexes

* Record insertion, deletion and update may be expensive
operations. Recall that all the index levels are ordered
files.

* Solutions:

o Overflow area + periodic reorganization.
o Dynamic multilevel indexes, based on B-trees and B+-trees.

* - Search tree

* - B-tree

* - Bt-tree

% Linkdping University : IDA/ADIT

& Linkdping University - IDA/ADIT

Search Tree

Figure 18 20 R I PG I I 0 L
A node in a search
tree with pointers to P,
subtrees below it.
X<K, K <X<K, K, <X

g-1

* Asearch tree of order p is a tree s.t.
» Each node contains at most p-1 search values, and
at most p pointers <P; Ky, ... P;, K; ... K, P> where g<p
* P;: pointer to a child node
* K;: asearch value (key)

- within each node: K;<K;<Ki<...<K,

Figure 18.9 H Tree node pointer
A search tree of .
order p=3. D Null tree pointer
el s Bl 1]
{s [I_T] (Lo Io]
IENII (7 ITs [ M2 1T T

* Searching a value X over the search tree
+ Follow the appropriate pointer P; at each level of the tree
* - only one node access at each tree level
* - time cost for retrieval equals to the depth /1 of the tree
» Expected that I << tree size (set of the key values)
+ Is that always guaranteed?

% Linkaping University e i

4% Linkoping University : IDA/ADIT




Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

* B stands for Balanced - all the leaf nodes are at the
same level (both B-Tree and B+-Tree are balanced)
o Depth of the tree is minimized
¢ These data structures are variations of search trees that
allow efficient insertion and deletion of search values.
¢ In B-Tree and B+-Tree data structures, each node
corresponds to a disk block
o Recall the multilevel index
o Ensure big fan-out (number of pointers in each node)
* Each node is kept between half-full and completely full
o Why?

A& Linkoping University = _ IDA/ADIT

Dynamic Multilevel Indexes Using B-Trees

and B+-Trees (cont.)

* Insertion
o An insertion into a node that is not full is quite efficient
+ If anode is full the insertion causes a split into two nodes
o Splitting may propagate to other tree levels

* Deletion
o A deletion is quite efficient if a node does not become less than
half full
o If a deletion causes a node to become less than half full, it must
be merged with neighboring nodes

4% Linkoping University : IDA/ADIT

Difference between B-tree and B+-tree

* Ina B-tree, pointers to data records exist at all levels of
the tree

* Ina B+tree, all pointers to data records exists only at the
leaf-level nodes

* AB+-tree can have less levels (or higher capacity of
search values) than the corresponding B-tree

% Linkdping University - u IDA/ADIT

B-tree Structures

@ [P B o [KalPe] P [KEP - [FalPed] Py
Tree Tree
pointer pointer
Tree Data Data Data Data
pointer pointer pointer pointer pointer
Tree
pointer
X<K, Ko <X<K Kor <X
® FEEER] [+] ee node piner

EIDatapmmev
|:|Nullneepoimev
UGCEEE]] e [EE] ] [[EE] [EE] ]

Figure 18.10
B-tree structures. (a) A node in a B-tree with g - 1 search values. (b) A B-tree
of order p = 3The values were inserted in the order 8, 5, 1, 7,3, 12,9, 6.

% Linkdping University = IDA/ADIT

The Nodes of a B+-tree

The nodes of a B*-tree. (a) Internal node of a B*-tree with g — 1 search values.
(b) Leaf node of a B*tree with g — 1 search values and q — 1 data pointers.

® AR |KH|.F|K| TR, |P|
Tree Tree Tree
pulnler pomler pmn(er

X<K, Ka<X<K;

(b)

[[idpd [khpe] - [KLP] - [KelPed P 4_.::;:'.:;?
node in
tree

Data Data Data Data
pointer pointer pointer pointer

P, (pointer at leaf node): ordered access to the data records on the indexing fields

A& Linkoping University e IDAJADIT

B+-trees: Retrieval

* Very fast retrieval of a random record

log. . N|+1

r

2
o pis the order of the internal nodes of the B+-tree.
o N is the number of leaves in the B+-tree.

* How would the retrieval proceed ?
* Insertion and deletion can be expensive.

A& Linkoping University < - IDA/ADIT




B+-trees: Insertion

1

Insert: 8

% Linkdping University . . T IDA/ADIT

B+-trees: Insertion

Insert: 5

% Linkdping University T IDA/ADIT

B+-trees: Insertion

I I Overflow — create a new level

Insert: 1

% Linkdping University » = IDA/ADIT

B+-trees: Insertion

Insert: 7

% Linkdping University V = IDA/ADIT

B+-trees: Insertion

Overflow - Split

Insert: 3

A& Linkoping University .. Eae IDA/ADIT

B+-trees: Insertion

[+B[sH

Overflow - Split
Propagates a new level

Insert: 12

A& Linkoping University Eae IDA/ADIT




B+-trees: Insertion

el
1| VN N |

| \

EEEEHiE HEEEEHE )

Insert: 9

A& Linkoping University = IDA/ADIT

B+-trees: Insertion

|
I YN

AN \
CEGEEE ke Bk |

Overflow — Split, propagates

Insert: 6

4% Linkoping University 3 IDA/ADIT

B+-trees: Insertion

el
.//
I V| S

[ \

S e TG

Resulting B+-tree

% Linkdping University = - u IDA/ADIT

B-trees: Order

One node must fit in one block:

B (-1 (P.  +K)<B o ps et tK
p- 3 p-1- ; = ps=
block reErd Pblock +P)‘ecord +K
P order, number of block pointer entries in a node
Phiock size of a block pointer
Prasa size of a record pointer
K size of a search key field

% Linkdping University = = IDA/ADIT

B+-trees: Order

One internal node must fit in one block:

P 1)-K<B < s
PPy +(p=D-K < =g
block Pblock +K
One leaf node must fit in one block:
B-P, £
lock
. < < —— ¢
pleaf (f:‘ecord +K)+ Pblock <sBE= pleaf - P +K
record
P order, number of pointer entries in an internal node
Plear number of record pointer entries in a leaf node
Plsec size of a block pointer
K size of a search key field
Piscora size of a record pointer

A& Linkoping University e e

Exercise

* B=4096 bytes, P=16 bytes, K=64 bytes, node fill
percentage=70 %.
* For both B-trees and B+-trees:
o Compute the order p.

o Compute the number of nodes, pointers and key values in the
root, level 1, level 2 and leaves.

o If the results are different for B-trees and B+-trees, explain why
this is so.

A& Linkoping University B IDA/ADIT




