Database Technology
Indexing

Fang Wei-Kleiner

% Linkdping University B s IDA/ADIT

Files and records

* Letusassume
o B is the size in bytes of the block.

o R is the size in bytes of the record.

o ris the number of records in the file.

 Blocking factor (number of
records in each block):

B
bfr =| = .
” H /B
* Blocks needed for the file: n=

IDA / ADIT

Primary index

* Let us assume that the ordering field is a key.
* Primary index = ordered file whose records contain two

fields: \
o One of the ordering key values. binary search !

o A pointer to a disk block.

* There is one record for each data block, and the record

contains the ordering key value of the first record in the
data block plus a pointer to the block.

A& Linkdping University .~~~ = =~ |pA/ADIT

Primary index

(Andersson, Anders)| | | | |
r Block 1
| = ‘ Pi (Andersson, Nils) | | | | J
. (Andersson, Sven) | r] | i
: r Block 2
K1 = (Andersson, Anders) | P1 = Address of block 1 . E::Zersson, /S\nde)rs) y (Bengtsson, Anders)| | | | J
= — s 5= hg fblock . ersson, Sven
K2_(An ?rsson, Yen) P _A dress of block 2 . = < N =Y (Davidsson, Nils) | | | | 3
K3 = (Davidsson, Nils) P3 = Address of block 3 . (Deids=on, Hils) ¢ Bloeks
K4 = (Nilsson, Johan) | P4 = Address of block4 | o bab) S
: (Larsson, Anders) | | | |
K5 = (Svensson, Karl) P5 = Address of block 5 . (Bvensson. kot = <
(Nilsson, Johan) | | | |
r Block 4
(Petersson, Jorgen) | | | | J

* Why is it faster to access a random record via a
binary search in index than in the file ?

* What is the cost of maintaining an index? If the
order of the data records changes...

A& Linképing University .~ = ==~ pA/ADIT

Primary Index

* B is the size in bytes of the block.
* [is the size in bytes of the index.

* xis the number of index entries
(for primary index x=b).

 Blocking factor index:

B

bfr. =|—
fr, 1‘
 Blocks needed for the file:

bi = [i} S\/
bfr. bi

o}.{~ Linkdping University ' . IDA/ADIT

Exercise

* Assume an ordered file whose ordering field is a key. The
file has 1000000 records of size 1000 bytes each. The disk
block is of size 4096 bytes (unspanned allocation). The
index record is of size 32 bytes.

* How many disk block accesses are needed to retrieve a
random record when searching for the key field

o Using no index ?
o Using a primary index ?

% Linkdping University . - " DA/ADIT

Primary index

What is the cost for maintaining a primary index?

e Insert

Delete

« Update

% Linkoping University g TR IDA/ADIT

Clustering index

* Now, the ordering field is a non-key.

* Clustering index = ordered file whose records contain
two fields:

o One of the ordering field Values.\. binary search !

o A pointer to a disk block.

* There is one record for each distinct value of the
ordering field, and the record contains the ordering
field value plus a pointer to the first data block where
that value appears.

A& Linkoping University .~~~ =&~ pa/ADIT

Clustering index

Dept# Name ID Salary
1 Andersson | 12| 2000
1 Svensson | 13| 4000 Block 1
Index Data File 5
1 |/ 2 A
/
- / - > Block 2
3 o 3
4 7 4 J
5 B —————p 5 G
D > Block 3
5 oc
5 J

 Efficiency gain ? Maintenance cost ?

% Linkﬁping University " R IDA/ADIT

Secondary indexes

* The index is now on a non-ordering field.
* Let us assume that that is a key.

* Secondary index = ordered file whose records contain
two fields:
o One of the non-ordering field values. binary search !
o A pointer to a disk record or block.

* There is one record per data record.

A& Linkdping University .~ = ¢~ pa/ADIT

Secondary indexes

Index Data File

3452626

4945864

N

5012128

6487539

AN

7000111

7299990

8232333

3\

9000013

ID# SSN Dept. Salary
1 4945864 | 12| 2000
2 7000111 | 13| 4000
3
4
5 6487539
6 7299990
7 3452626
8 9000013
9 8232333
10 e
11 5012128
12

 Efficiency gain ? Maintenance cost ?

% Linkdping University

Data File

Block 1

> Block 2

> Block 3

IDA / ADIT

Secondary indexes

* Now, the index is on a non-ordering and non-key
field.

[]
. []
Option 1 Data File o
ID# Name Dept. Salary °
Dense Index 1 Daniels | 12| 2000 i H .
2 | Lancaster | 13| 4000 . O ptlo n 3 Data File
3 Andersson RGNS :
: ID# Name
Index Data File 4 | Andersson o o) : S
°
T — 5 = : Lgvel of ind |re<_:t|on aniels
Andersson 6 Molin sock2 ¢ With record pointers 2 Lancaster
Andersson 7 French o
Daniels 8 Daniels E 3 Andersson
I,zra:r:il: 9 | Andersson + Index Data File 4 Andersson
Hagberg E - Hagberg Block 3 : .
Lancaster :; E:I:]egr . Andersson 5 Silver
L4 .
: Daniels 6 Molin
..
Option 2 e French 7 French
Data File o .
ID# Name Dept. Salary : Ha ber 8 Dan|e|s
Repeating field 1| Daniels [12] 2000 : gberg
i i 2 L i(13| 4000
PIRRIES W Blogkdt, o e 9 Andersson
[]
Index Data File 4 | Andersson : 10 Hagberg
Andersson 1 S e . 11 Yang
Daniels | /- 6 Molin Block 2 o -
7 French . 12 Miller
French r” -
8 Daniels °
Hagberg b :
Lancaster 9 Andersson :
10 Hagberg °
1 Yang Block 3 :
12 Miller .
[]

IDA / ADIT

Multilevel indexes

Index on index (first level, second level, etc.).

Works for primary, clustering and secondary indexes as
long as the first level index has a distinct index value
for every entry.

How many levels ? Until the last level fits in a single
disk block.

How many disk block accesses to retrieve a random
record?

IDA / ADIT

Multilevel indexes

5
8
12
15
: V/ .
8|0 24
15[o / 29
24| ©1 35
5 W/vas e-/'% g
=i 39 — (Y]
55| o b “‘\:1 2
85 &\51 &\:: ®
55| o]
Second Level 83 &\‘;
71 o]
w“\\\\\\\:
\
i) "’\\\ 63
\ 66
First Level \\ 1

IDA / ADIT

Exercise

* Assume an ordered file whose ordering field is a key. The
file has 1000000 records of size 1000 bytes each. The disk
block is of size 4096 bytes (unspanned allocation). The
index record is of size 32 bytes.

* How many disk block accesses are needed to retrieve a
random record when searching for the non-ordering key

field
o Using no index ?
o Using a secondary index ?
o Using a multilevel index ?

A& Linkdping University .~ = ¢~ pa/ADIT

Dynamic multilevel indexes

* Record insertion, deletion and update may be expensive
operations. Recall that all the index levels are ordered

files.

* Solutions:
o Overtlow area + periodic reorganization.
o Dynamic multilevel indexes, based on B-trees and B+-trees.

e - Search tree
e — B-tree
e = B+-tree

A& Linkdping University S S DA/ ADIT

Search Tree

Figure .1 8.8 o P K| ... | K |oP K Kt | Py
A node in a search
tree with pointers to / l P, \
subtrees below it.

X<K, K_<X<K; Kq_1<X

* A search tree of order p is a tree s.t.
* Each node contains at most p-1 search values, and

at most p pointers <P; ,K;, ... P;, K; ... K ;, P> where g<p
* P pointer to a child node
* K asearch value (key)

- within each node: K;<K,<Ki<...<K 4

A& Linképing University .~ = ==~ pA/ADIT

Figure 18.9 EI Tree node pointer
A search tree of

order p =3, I:I Null tree pointer

S TN
e O\

1 7 8 12

* Searching a value X over the search tree
« Follow the appropriate pointer P; at each level of the tree
* - only one node access at each tree level
* - time cost for retrieval equals to the depth /1 of the tree
* Expected that h << tree size (set of the key values)
* Is that always guaranteed?

% Linkoping University -~ - " DA/ADIT

Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

B stands for Balanced = all the leaf nodes are at the
same level (both B-Tree and B+-Tree are balanced)

o Depth of the tree is minimized

» These data structures are variations of search trees that
allow efficient insertion and deletion of search values.

 In B-Tree and B+-Tree data structures, each node
corresponds to a disk block

o Recall the multilevel index
o Ensure big fan-out (number of pointers in each node)

Each node is kept between half-full and completely full
o Why?

IDA / ADIT

Dynamic Multilevel Indexes Using B-Trees

and B+-Trees (cont.)

* Insertion
o An insertion into a node that is not full is quite efficient
* If anode is full the insertion causes a split into two nodes
o Splitting may propagate to other tree levels

 Deletion

o A deletion is quite efficient if a node does not become less than
half full

o If a deletion causes a node to become less than half full, it must
be merged with neighboring nodes

A& Linkdping University S S DA/ ADIT

Difference between B-tree and B+-tree

* In a B-tree, pointers to data records exist at all levels of
the tree

* In a B+-tree, all pointers to data records exists only at the
leaf-level nodes

* A B+-tree can have less levels (or higher capacity of
search values) than the corresponding B-tree

A& Linkdping University .~ = ¢~ pa/ADIT

B-tree Structures

(a) rP1 K1 "Pf1 5,2 s /‘(,-_1 "Pr,-_1 TID’ /(I 0PI'I- Ce Kq_1 0F)"q_1 Pq .
Tree Tree
Y Y pointer Y Y pointer
Trge Data Data Data Data
pointer pointer pointer pointer pointer
Tree
pointer
X<K, K. < X<K; K1 <X
(b) o|[5 |0 ? 8 |o||e e | Tree node pointer
o [Data pointer
Null tree pointer
1o 3 |o 6 |o 7 |o 9 |o 12|o

Figure 18.10
B-tree structures. (a) A node in a B-tree with g — 1 search values. (b) A B-tree
of order p = 3.The values were inserted in the order 8,5, 1,7, 3, 12, 9, 6.

IDA / ADIT

The Nodes of a B+-tree

The nodes of a B*-tree. (a) Internal node of a B*-tree with g — 1 search values.
(b) Leaf node of a B*-tree with g — 1 search values and g — 1 data pointers.

(@) o P K | Kir [P Ki Ke-1] Pae

Tree Tree Tree
pointer pointer pointer

X< K, K_i<X<K; Kog-1 <X
(b) .
K |.Pr Kol Pra] - [KLPr] - (K lgProt] Prot oo oo
node in
Y Y Y Y tree
Data Data Data Data
pointer pointer pointer pointer

P,... (pointer at leaf node): ordered access to the data records on the indexing fields

IDA / ADIT

B+-trees: Retrieval

* Very fast retrieval of a random record

log

P
2

|

N

+1

o pis the order of the internal nodes of the B+-tree.

o N is the number of leaves in the B+-tree.

* How would the retrieval proceed ?

* Insertion and deletion can be expensive.

% Linkdping University

IDA / ADIT

B+-trees: Insertion

[

Insert: 8

IDA / ADIT 25

B+-trees: Insertion

Insert: 5

IDA / ADIT 26

B+-trees: Insertion

51°| 8 |® I Overflow — create a new level

Insert: 1

Ao Linkdping University e IDA/ADIT 27

B+-trees: Insertion

Insert: 7

Ao Linkdping University e IDA/ADIT 28

B+-trees: Insertion

Overflow - Split

Insert: 3

Ao Linkdping University e IDA/ADIT 29

B+-trees: Insertion

Overflow - Split
Propagates a new level

Insert: 12

Ao Linkdping University , T s IDA/ADIT

B+-trees: Insertion

I 3 8 \\
1 [] 3 o | > 5) — 7 [] 8 [] 12 ° I
Insert: 9

A& Linkdping University y B IDA/ADIT 31

B+-trees: Insertion

l’ 3 \ 8 \\\
s ESUs | T (BS] 7'8' gie 2 (e

Overflow — Split, propagates

Insert: 6

A& Linkdping University y B IDA/ADIT 32

B+-trees: Insertion

Resulting B+-tree

A& Linkdping University y B IDA/ADIT 33

B-trees: Order

One node must fit in one block:

B +Precord +K
Pblock +h record S

p'Pblock +(p_1)‘(131

record

+ K) £ B ==

p order, number of block pointer entries in a node
Piinci size of a block pointer

P size of a record pointer

K size of a search key field

Ao Linkdping University ” TR IDA/ADIT 34

B+-trees: Order

One internal node must fit in one block:

B+K
p <
Pblock +K

p-Pblock+(p—1)-KSB =

One leaf node must fit in one block:

B~ block
. < < ' =

P leaf (Precord T K) T Pblock sb = P leaf — Pr e K _
p order, number of pointer entries in an internal node
Picss number of record pointer entries in a leaf node
Fion size of a block pointer
K size of a search key field
= -~ size of a record pointer

% Linkoping University . B IDA/ADIT 35

Exercise

« B=4096 bytes, P=16 bytes, K=64 bytes, node fill
percentage=70 %.

 For both B-trees and B+-trees:

o Compute the order p.

o Compute the number of nodes, pointers and key values in the
root, level 1, level 2 and leaves.

o If the results are different for B-trees and B+-trees, explain why
this is so.

A& Linkdping University Bap e DA/ ADIT 36

