Database Technology
Data structures

Fang Wei-Kleiner

& Linkdping University vi o IDA/ADIT

Database system

Real world

Query Answer

- ’ - Model

Database

% Linkdping University | = IDA/ADIT

Storage hierarchy

CPU
e Cache memory Primary storage
o Mai (fast, small, expensive, volatile,
amn memory accessible by CPU)
© Disk Secondary storage
o T. (slow, big, cheap, permanept,
ape inaccessible by CPU) \D
atabases

» Important because it effects query efficiency.

% Linkdping University = IDA/ADIT

a

| / i
i
actuator @M read/v}rite head spindle __ disk rotation

] E"—';' -
—

)\ cylinder
" of tracks

actuator
movement

% Linkdping University = IDA/ADIT

Disk Storage Devices

* Preferred secondary storage device for high storage
capacity and low cost.

* Data stored as magnetized areas on magnetic disk
surfaces.

» A disk pack contains several magnetic disks connected
to a rotating spindle.

* Disks are divided into concentric circular tracks on each
disk surface.

o Track capacities vary typically from 4 to 50 Kbytes or more

A& Linkoping University . Eae IDA/ADIT

Disk Storage Devices (cont.)

» Atrack is divided into smaller blocks or sectors

* The division of a track into sectors is hard-coded on the
disk surface and cannot be changed.
o The block size B is fixed for each system.
« Typical block sizes range from B=512 bytes to B=4096 bytes.

o Whole blocks are transferred between disk and main
memory for processing.

A& Linkbping University ‘ Eae IDA/ADIT

Disk Storage Devices (cont.) Disk
¢ Aread-write head moves to the track that contains the
block to be transferred.
o Disk rotation moves the block under the read-write head
for reading or writing.
* A physical disk block (hardware) address consists of:

o a cylinder number (imaginary collection of tracks of same
radius from all recorded surfaces)

o the track number or surface number (within the cylinder)
o and block number (within track).

¢ Read/write to disk is a bottleneck, i.e.
o Disk access =10 sec (9 - 60 milliseconds).
o Main memory access ~10" sec (50 nanoseconds) .
o CPU instruction =]()° sec (< 10 nanoseconds)

* Reading or writing a disk block is time consuming
o seek time ->5-10 msec
o rotational delay (depends on revolution per minute) = 3 - 5 msec

4% Linkoping University : IDA/ADIT

A& Linkoping University T IDA/ADIT

Files and records Files and records

¢ Letus assume

¢ Data stored in files.
+ File is a sequence of records (rows).
* Record is a set of field values.

 For instance, file = relation, record = entity, and field =

attribute.

* Records are allocated to file blocks.

% Linkdping University

IDA/ADIT

o Bis the size in bytes of the block.
o Ris the size in bytes of the record.
o ris the number of records in the file.

* Blocking factor (number of
records in each block):

B
bfr=|2
sr-|2)
* Blocks needed for the file:

i N

* What is the space wasted per
block ?

& Linkdping University

IDA/ADIT

Files and records

* Wasted space per block = B — bfr *R.
* Solution: Spanned records.

From file blocks to disk b

locks

* Contiguous allocation: cheap sequential access but

expensive record addition. Why ?

* Linked allocation: expensive sequential access but cheap

record addition. Why ?

block i ‘ record 1 ‘ record 2 ‘ wasted‘
U g * Linked clusters allocation.
mspanne
block i+1 ‘ record 3 ‘ record 5 ‘ wasted ‘ « Indexed allocation
block i ‘ record 1 ‘ record 2 *record 3 ‘p }—‘
Spanned v
block i+1 ‘record 3 record 4 record 5 ‘ ‘

A& Linkoping University

IDA/ADIT

& Linkdping University

IDA/ADIT

File organization

* How are the records arranged in the storage?
o Heap files.
o Sorted files.
o Hash files.

+ File organization != access method, though related in
terms of efficiency.

A& Linkoping University = IDA/ADIT

Heap files

* Records are added to the end of the file. Hence,
o Cheap record addition.

o Expensive record retrieval, removal and update, since they imply
linear search: b

* Average case: [E] block accesses.
» Worst case: b block accesses (if it doesn't exist or several exist).

o Moreover, record removal implies waste of space. So, periodic
reorganization.

& Linkoping University : IDA/ADIT

Sorted files

* Records ordered according to some field. So,
o Cheap ordered record retrieval (On the ordering field,

otherwise expensive):
« All the records: access blocks sequentially.
* Next record: probably in the same block.
* Random record: binary search, then worst case implies
[log, b] block accesses.
o Expensive record addition, but less expensive record deletion
(deletion markers + periodic reorganization).

* Is record updating cheap or expensive ?

& Linkdping University == IDA/ADIT

Internal hash files

* The hash function applies to the hash field and
returns the position of the record in the array of
records. E.g.

position = field mod r

» Collision: different field values hash to the same
position. Solutions:

o Check subsequent positions until one is empty.
o Use a second hash function.
o Put the record in the overflow area and link it.

& Linkdping University 7. < IDA/ADIT

External hash files

* The hash function returns a bucket number, where a
bucket is one or several contiguous disk blocks. A table
converts the bucket number into a disk block address.

+ Collisions are typically resolved via overflow area.

* Cheapest random record retrieval (search for equality).

» Expensive ordered record retrieval.
* Is record updating cheap or expensive ?

: Linkdping University : IDA/ADIT

Extendible hashing

Situation: Bucket (primary bucket) becomes full. Why
not re-organize file by doubling # of buckets?

e Reading and writing all buckets is expensive!

o Idea: Use directory of pointers to buckets, double #
of buckets by doubling the directory, splitting just
the bucket that overflowed!

e Directory much smaller than file, so doubling it is
much cheaper. Only one page of data entries is
split. No overflow page!

o Trick lies in how hash function is adjusted

& Linksping University ; IDA/ADIT

Bucket A
o Directory is array of

size 4. T
e To find bucket for r, o
take last global depth # -

bits of h(r); we denote it 1 Bucket &

by h(r). If h(r)=5=
binary 101, it is in '
bucket pointed to by 01. DATA PAGES

DIRECTORY
Bucket D

o Insert: If bucket is full, split it (allocate new block, re-
distribute).

o Ifnecessary, double the directory. (As we will see,

splitting a bucket does not always require

doubling; we can tell by comparing global depth

with local depth for the split bucket.)

% Linkdping University. z 7 : IDA/ADIT

& Linkdping University

Insert h(r)=20 (Causes Doubling)
LOCAL DEPTH-Z¥| I Bucket A LOCAL DEPTH

GLOBAL DEPTH

Bucket A

Bucket B
Bucket B

01
10

W Bucket C

T .

2
10*
15* 7% 19* Bucket D
110

i

] g
(split image'

of Bucket A)

Extendible hashing (cont.)

+ Extend: if local depth smaller than global depth then
split bucket, else double directory.

* Shrink: if local depth smaller than global depth for all
the buckets then halve directory.

* Gain: no performance degradation due to collisions +
space saving.

* At the cost of: 2 block accesses per record (directory +
data, assuming 1 block per bucket), space for directory,
and bucket reorganization.

& Linkdping University 7 - IDA/ADIT

Linear hashing

* Collisions handled via overflow chain for each bucket.
* Extend when collision

o Split bucket n in two.

o Distribute blocks in bucket n based on K mod 2N.

o n:=n+l.
* Retrieve: if (K mod N)<n then return K mod N

else return K mod 2N.

* Shrink based on load factor (=r/(bfr * N)).

& Linkping University = IDA/ADIT

