
Database Technology

Topic 12: Query Processing
 and Optimization
Olaf Hartig
olaf.hartig@liu.se

2
Database Technology
Topic 12: Query Processing and Optimization

Outline

1. Query representations
– Logical plans
– Physical plans

2. Query processing steps

3. Examples for physical operators
– Table scan
– Sorting
– Duplicate elimination
– Nested loop join
– Sort-merge join
– Hash join

Query Representations

4
Database Technology
Topic 12: Query Processing and Optimization

Query Representations: Overview

● While it is processed by a DBMS, a query
goes through multiple representations

● Usually, these are:
1. An expression in the query language (e.g., SQL)
2. Parse tree
3. Logical plan
4. Physical plan
5. Compiled program

5
Database Technology
Topic 12: Query Processing and Optimization

Logical Plans

● Represented as an expression
in a logical algebra (such as the
relational algebra)
– Closely related to the

logical data model
● Set of operations for the

relational data model
● Similar to the algebra

on numbers
– Operands and results

are relations instead
of numbers

6
Database Technology
Topic 12: Query Processing and Optimization

Logical Plans

● Represented as an expression
in a logical algebra (such as the
relational algebra)
– Closely related to the

logical data model
● Can be visualized as a

tree of logical operators

SELECT title
FROM StarsIn
WHERE starName IN (

SELECT name
FROM MovieStar
WHERE dob LIKE "% 1960")

σstarName=name

 X

πname

σdob LIKE "% 1960"

MovieStar

StarsIn

πtitle

selection
operator

projection
operator

cartesian
product

7
Database Technology
Topic 12: Query Processing and Optimization

Logical Optimization

● An algebra expression may be rewritten
into a semantically equivalent expression
– Just like, for instance: (x+y)*z ≡ (x*z) + (y*z)
– Using the rewritten expression may result in

a more efficient
query execution

πtitle

 X starName=name

πname

σdob LIKE "% 1960"

MovieStar

StarsIn

σstarName=name

 X

πname

σdob LIKE "% 1960"

MovieStar

StarsIn

πtitle

 ≡

selection
operator

projection
operator

cartesian
product join

operator

8
Database Technology
Topic 12: Query Processing and Optimization

Physical Plans

● Also often called query execution plan (QEP)

● Represented as an expression in a physical algebra
– Algebra over sequences of tuples
– Operators are called physical operators

● Physical operators come with a specific algorithm
– e.g., a nested loops join (see later)

● Physical operators are associated with a cost function
– Can be used to calculate the amount

of resources needed for their execution

9
Database Technology
Topic 12: Query Processing and Optimization

Physical Plans (Example)

πtitle

 X starName=name

πname

σdob LIKE "% 1960"

MovieStar

StarsIn

 Index Scan
predicate: dob LIKE "% 1960"

 table: MovieStar

Hash Join
predicate: starName=name

Sequential Scan
table: StarsIn

Project
Attributes: { title }

Possible physical
plan for the given
logical plan:

10
Database Technology
Topic 12: Query Processing and Optimization

Logical vs. Physical Operators

● Logical operators and physical operators do
not necessarily map directly into one another
– For instance,

… most join algorithms can project out
 attributes (without duplicate elimination)

… a (physical) duplicate-removal operator implements
only a part of the (logical) projection operator

… a (physical) sort operator has no counterpart
in a (set-based) logical algebra

Query Processing Steps

12
Database Technology
Topic 12: Query Processing and Optimization

Query Processing Steps: Overview

Parsing

Query Validation

View Resolution

Optimization

Plan Compilation

Execution

13
Database Technology
Topic 12: Query Processing and Optimization

Query Processing Steps: Parsing

● Input: SQL query string

● Output: internal representation
(e.g., based on relational algebra)

Parsing

Query Validation

View Resolution

Optimization

Plan Compilation

Execution

14
Database Technology
Topic 12: Query Processing and Optimization

Query Processing Steps: Validation

Check whether:

… mentioned tables, attributes,
etc., exist

… comparisons are feasible (e.g.,
comparability of attribute types)

… aggregation queries have
a valid SELECT clause

… etc.

Parsing

Query Validation

View Resolution

Optimization

Plan Compilation

Execution

15
Database Technology
Topic 12: Query Processing and Optimization

Query Processing Steps: Views

● Substitute each reference to
a view by the corresponding
view definition

Parsing

Query Validation

View Resolution

Optimization

Plan Compilation

Execution

16
Database Technology
Topic 12: Query Processing and Optimization

Query Processing Steps: Optimize

● Consider possible query
execution plans (QEPs)
– Different QEPs have different

costs (i.e., resources needed
for their execution)

● Output: an efficient QEP
– i.e., estimated cost is the

lowest or comparatively low

● This task is all but trivial ...

Parsing

Query Validation

View Resolution

Optimization

Plan Compilation

Execution

17
Database Technology
Topic 12: Query Processing and Optimization

Query Processing Steps: Optimize

… this task is all but trivial!

● Space of all possible QEPs is huge
– Optimizers enumerate

only a restricted subset
(called: search space)

● A desirable optimizer:
– Cost estimation is accurate
– Search space has low-cost QEPs
– Enumeration algorithm is efficient

Parsing

Query Validation

View Resolution

Optimization

Plan Compilation

Execution

18
Database Technology
Topic 12: Query Processing and Optimization

Query Processing Steps: Compile

● Translate the selected QEP
into a representation that is
ready for execution
– e.g., interpreted language,

compiled machine code

Parsing

Query Validation

View Resolution

Optimization

Plan Compilation

Execution

19
Database Technology
Topic 12: Query Processing and Optimization

Query Processing Steps: Execution

● Execute the compiled plan
● Return the query result via

the respective interface

Parsing

Query Validation

View Resolution

Optimization

Plan Compilation

Execution

Examples for
Physical Operators
● Table Scan
● Sorting
● Duplicate Elimination
● Nested Loop Join
● Sort-Merge Join
● Hash Join

21
Database Technology
Topic 12: Query Processing and Optimization

Table Scan

● Leaves of logical operator trees are tables

● Accessing them completely implies a sequential scan
– Load each file block of the table
– Sequentially scanning a table that

occupies n blocks has n I/O cost

22
Database Technology
Topic 12: Query Processing and Optimization

Table Scan (cont'd)

● Combining the scan with the next
operation in the plan is often better

● Example:
 SELECT A, B FROM t WHERE A = 5
Filtering (also called selection): if we have an index
 on A, perform an index scan instead (i.e.,
 obtain relevant tuples by accessing the index)
– Especially effective if A is a key

Projection: integrate into the table scan (i.e., read
 all tuples but only pass on attributes
 that are needed)
– Can also be combined with index scan

23
Database Technology
Topic 12: Query Processing and Optimization

Sorting

● Many physical operators
require input to be sorted

● The (unsorted) input may
not fit into main memory

● We need an external
sorting algorithm
– Intermediate results are

stored temporarily on
secondary memory

24
Database Technology
Topic 12: Query Processing and Optimization

(Simple) External Merge Sort

● First, sort each file block internally
● Group these sorted blocks into pairs,

for each pair merge its two blocks
● Next, each of these groups is merged with

another group, resulting in groups of four blocks
● And so on …
● The final group is the completely sorted file

● This strategy uses 3 page buffers in main memory
● If more buffers are available, we should exploit them…

25
Database Technology
Topic 12: Query Processing and Optimization

External Merge Sort

● Suppose m+1 buffers are available in main
memory, and the input occupies p file blocks

● Stage 1:
– Group blocks into p/m groups and sort each group (using

an m-way merge after sorting each of its blocks internally)
● Each additional stage n (n > 1):

– Group the sorted groups from stage n–1 into larger
groups such that each larger group contains m of the
previous groups (and mn file blocks)

– For each of these new groups, perform an m-way merge
– If mn+1 > p, we are done

● Maximum number of stages:
● Maximum number of blocks read and written: 2×p×⌈ logm(p)⌉

⌈ logm(p)⌉

26
Database Technology
Topic 12: Query Processing and Optimization

Duplicate Elimination (Option 1)

● Two steps:
1. Sort input table (or intermediate result from previous

operator) on DISTINCT column(s)
– Can be skipped if input is already sorted

2. Scan sorted table and output unique tuples

● Advantage: Generated output is sorted
● Disadvantage: Cannot be pipelined

27
Database Technology
Topic 12: Query Processing and Optimization

Duplicate Elimination (Option 2)

● Idea: scan the input and gradually populate an internal
data structure that holds each unique tuple once

● For each input tuple, check if it has already been seen
 No: insert tuple into the data structure and output the tuple
 Yes: skip to the next input tuple

● Possible data structures:
– Hash table – might be faster, needs good hash function
– Binary tree – some cost for balancing, robust

● Advantage: can be pipelined
● Disadvantage: does not sort output

– but existing sorting would remain

28
Database Technology
Topic 12: Query Processing and Optimization

Nested Loops Join (NLJ)

● General idea (assuming join condition is R.A=S.A):
FOR EACH tuple r in relation R DO

FOR EACH tuple s in relation S DO
IF r.A = s.A THEN output tuple r Us

● Of course, we do this for tables that
are distributed over multiple pages:
FOR EACH page p of relation R DO

FOR EACH page q of relation S DO
FOR EACH tuple r on page p DO

FOR EACH tuple s on page q DO
IF r.A = s.A THEN output tuple r Us

● I/O cost: pages(R) + pages(R) X pages(S)

29
Database Technology
Topic 12: Query Processing and Optimization

Possible Improvements of NLJ

● Block nested loop join
– For the outer-loop relation, read multiple blocks per

iteration (as many as free buffers in main memory)

● Zig-zag join
– For the inner-loop relation, alternate between

loading its blocks forward and backward

● Index nested loop join
– If there is an index on the join column of one of the two

relations, make it the inner relation and use the index
instead of scanning the whole data file in every iteration

30
Database Technology
Topic 12: Query Processing and Optimization

Sort-Merge Join

● Sort phase
– Sort both inputs on the join attributes
– May need to use an external sorting algorithm
– Sorting may be skipped for inputs that are already sorted

● Merge phase
– Synchronously iterate over both (sorted) inputs
– Merge and output tuples that can be joined
– Caution if join values may appear multiple times

31
Database Technology
Topic 12: Query Processing and Optimization

Sort-Merge Join (Cost Estimation)

● I/O costs for sort phase:

● I/O costs for merge phase:

2×pages (R)×⌈ log(pages(R))⌉+2×pages (S)×⌈ log(pages (S))⌉

sorting R sorting S

pages(R)+ pages (S)

32
Database Technology
Topic 12: Query Processing and Optimization

Hash Join

● Idea: use join attributes as hash keys in both input tables

● Choose hash function for building hash tables with m
buckets (where m is the number of page buffers available
in main memory)

33
Database Technology
Topic 12: Query Processing and Optimization

Hash Join

● Partitioning phase:
– Scan relation R and populate its hash table
– Whenever the page buffer for a hash bucket is full,

write it to disk and start a new page for that buffer
– Finally, write the remaining page buffers to disk
– Do the same for relation S (using the same hash function!)
– Result: hash-partitioned versions of both relations on disk
– Now, we only need to compare tuples in corresponding partitions

● Probing phase:
– Read in a complete partition from R (assuming |R| < |S|)
– Scan the corresponding partition of S and produce join tuples

● I/O costs:
2×(pages (R)+ pages(S))+(pages(R)+ pages (S))

partitioning probing

Summary

35
Database Technology
Topic 12: Query Processing and Optimization

Summary

● For each query, different physical operators can be
combined into different, semantically equivalent QEPs

● Every physical operator comes with an algorithm
● Commonly used techniques for many of these algorithms:

– Combining: multiple tasks may be combined
once some input data has been read in

– Partitioning: by sorting or by hashing, we can partition the
input(s) and ignore many irrelevant combinations (less work)

– Indexing: existing indexes may be exploited to reduce work
to relevant parts of the input

● Each of these algorithms has a specific cost
● Thus, different QEPs have different costs
● Actual cost can only be estimated (w/o executing the QEP)

www.liu.se

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

