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Goal

* Preserve Isolation of the ACID properties
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Simple Database Model

* Database: simply, a collection of named items

e Granularity (size) of these data items is unimportant
- May be afield, a tuple, or a file block, etc
- Transaction processing concepts
are independent of granularity
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Basic Operations

* read_item(X): reads item X into a program variable
(for simplicity, assume that the
variable is also named X)

* write_item(X): write the value of program variable
X into the database item named X

* These operations take some amount of time to execute

* Basic unit of data transfer between the disk
and the computer main memory is a file block/page

Memory /
Buffers m

(cache)

DBMS pages
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Steps of Read / Write Operations

* read_item(X) consists of the following steps:
1. Find address of the file block that contains item X
2. Copy the file block into a buffer in main memory
(if the block is not already in main memory)
3. Copy item X from the buffer to the program variable X

* write_item(X) consists of the following steps:

1. Find address of the file block that contains item X

2. Copy the file block into a buffer in main memory
(if the block is not already in main memory)

3. Copy item X from the program variable named X
into its correct location in the buffer

4. Store the updated block from the buffer back to disk
(either immediately or at some later point in time)
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Transaction Notation

* Focus on read and write operations
- For instance, ws(Z) means that
transaction 5 writes data item Z
* b; and e; specify transaction boundaries (begin and end)
- i specifies a unique transaction identifier (TID)

* Example: T LF)
read_item(X); read_item(X);
X=X-N, X=X+M,
write_item(X); write_item(X);
read_item(Y);
Y=Y+N,

write_item(Y);

= Tu: by, ra(X), wi(X), (), wi(Y), €1
= T by, 1x(Y), Wa(Y), €;
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Initial Concepts

Schedule

* Sequence of interleaved operations from multiple TAs
* Example:

- S bl’ rl(s)l b2’ rz(c)- Wl(s)1 I’l(C), Wz(C)v W1(C)v €1, €,

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 9

Quiz

What can be concluded from the following schedule?
.., I,(EMPLOYEE), b,, w,(STUDENT), ...

A: Some employee has read a student record.

B: A transaction has read some data and then written it back.
C: At least three transactions were running concurrently.

D: All of the above.

E: None of the above.
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Serial Schedules

* Definition: a schedule is serial if the operations of any
TA are executed directly one after the other
- i.e., no interleaving of operations from different TAs

* Characteristics:

- Serial schedules trivially guarantee the isolation property
- For n transactions, there are n! serial schedules

Each of them produces a correct result (assuming the

consistency preservation property)

- However, not all of them might produce the same result
For instance, If two people try to reserve the last seat
on a plane, only one gets it. The serial order
determines which one. The two orderings have
different results, but either one is correct.
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Serial Schedules (cont'd)

Serial schedules are not feasible for performance reasons:
* Long transactions force other transactions to wait

* When a transaction is waiting for disk 1/0 or any other
event, system cannot switch to other transaction

* Solution: allow some interleaving
(without sacrificing correctness!)
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Acceptable Interleavings
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Conflicts

* Executing some operations in a different
order causes a different outcome
= (X)), Wwo(X), ... vs. L wa(X), (X), ...

T, will read a different value for X

= oW (), Wo(Y), ... vs. o wa(Y), wa(Y), ...

value for Y after both operations will be different

* Note that two read operations do not have this issue
- .12, 2, ... vs. ..n2),n2,...

both TAs read the same value of Z
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Conflicts and Equivalence

Definition: Two operations conflict if

1. they access the same data item X,

2. they are from two different transactions, and
3. at least one of them is a write operation.

Definition: Two schedules are conflict equivalent if
the relative order of any two conflicting operations is
the same in both schedules.

Example:
S1: by, 1y(S), by, 1,(C), Wy(S), 11(C), W,(C), W, (C), &, €,

S2: by, 1y(8), 1,(C), by, 1,(C), W, (S), W,(C), wy(c), €,, &,
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Serializability

Definition: A schedule with n transactions is serializable
if it is conflict equivalent to some serial schedule of
the same n transactions.

* Serializable schedule “correct” because
equivalent to some serial schedule, and
any serial schedule acceptable
- Transactions see data as if they were executed serially
- Transactions leave DB state as if they were executed
serially (hence, serializable schedules will leave the
database in a consistent state)

« Efficiency achievable through interleaving
and concurrent execution
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Testing Serializability

* Construct a serialization graph for the schedule
- Node for each transaction in the schedule
- Direct edge from T; to T; if some read or write operation
in T; appears before a conflicting operation in T;

* Aschedule is serializable if and only if
its serialization graph has no cycles
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Example

* Consider the following schedule
S: bl‘ rl(X)i b2' rZ(Y)l Wl(X)Y b3l WZ(Y)Y e2! rl(Y)i r3(X)l e3l Wl(Y)i el

* Serialization graph of S: e e

* No cycles! Hence, S is serializable.
- Equivalent to the following serial schedule:

...............................................
~
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« If the initial value of checking is $500, what value does it
have after the following interleaved execution completes?

A: $480 B: $500 C: $580 D: $600
- S bl’ rl(s)l b21 rz(C)r Wl(s)l r1(C)u WZ(C), W1(C)v €, &
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Key Question

Can we make sure that we only get serializable schedules?
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Locking Techniques
for Concurrency Control

Database Locks

* Locks can be used to ensure that
conflicting operations cannot occur

» Exclusive lock for writing, shared lock for reading
- Transaction cannot read item without first

getting a shared or an exclusive lock on it
- Transaction cannot write item without first
getting exclusive lock on it ‘ .

11
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Database Locks (cont'd)

* Request for lock may cause transaction to
block (wait) because write lock is exclusive
- Any lock on X (read or write) cannot be granted
if some other transaction holds write lock on X
- Write lock on X cannot be granted if some
other transaction holds any lock on X

* Blocked transactions are unblocked
and granted the requested lock
when conflicting transaction(s)
release their lock(s)

-
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Two-Phase Locking (2PL)

Definition: A transaction follows the two-phase locking
(2PL) protocaol if all of its read_lock() and write_lock()
operations come before its first unlock() operation.

* Atransaction that follows the 2PL protocol has
an expansion phase and a shrinking phase

« |f all transactions in a schedule follow the 2PL
protocol, then the schedule is serializable
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Deadlock

* Two or more transactions wait for one
another to unlock some data item
- T,waits for T, waits for ... waits for T, waits for T,

Deadlock prevention:
- Conservative 2PL protocol: Wait until you
can lock all the data to be used beforehand

Starvation

* Atransaction is not executed for an indefinite period
of time while other transactions are executed normally
- e.g., T waits for write lock and other TAs repeatedly
grab read locks before all read locks are released

* Starvation prevention:

Summary
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it-di - First-come-first-served waiting scheme
Wait-die _ - Wait-die
Wound-wait - Wound-wait
- No waiting - etc
- Cautious waiting
» Deadlock detection:
- Wait-for graph
- timeouts
iz oo . [ S .
Summary

* Characterizing schedules based on serializability
- Serial and non-serial schedules
- Conflict equivalence of schedules
- Serialization graph
* Two-phase locking
- Guarantees conflict serializability
- Possible problems: deadlocks and starvation
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