Database Technology

Topic 10:
Concurrency Control

Olaf Hartig

olaf.hartig@liu.se

LINKOPING
II." UNIVERSITY

Transaction Processing Model

hwv

Goal

* Preserve Isolation of the ACID properties

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control

Simple Database Model

* Database: simply, a collection of named items

e Granularity (size) of these data items is unimportant
- May be afield, a tuple, or a file block, etc
- Transaction processing concepts
are independent of granularity

Il.u LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control

Basic Operations

* read_item(X): reads item X into a program variable
(for simplicity, assume that the
variable is also named X)

* write_item(X): write the value of program variable
X into the database item named X

* These operations take some amount of time to execute

* Basic unit of data transfer between the disk
and the computer main memory is a file block/page

Memory /
Buffers m

(cache)

DBMS pages

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 5

Steps of Read / Write Operations

* read_item(X) consists of the following steps:
1. Find address of the file block that contains item X
2. Copy the file block into a buffer in main memory
(if the block is not already in main memory)
3. Copy item X from the buffer to the program variable X

* write_item(X) consists of the following steps:

1. Find address of the file block that contains item X

2. Copy the file block into a buffer in main memory
(if the block is not already in main memory)

3. Copy item X from the program variable named X
into its correct location in the buffer

4. Store the updated block from the buffer back to disk
(either immediately or at some later point in time)

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control

Transaction Notation

* Focus on read and write operations
- For instance, ws(Z) means that
transaction 5 writes data item Z
* b; and e; specify transaction boundaries (begin and end)
- i specifies a unique transaction identifier (TID)

* Example: T LF)
read_item(X); read_item(X);
X=X-N, X=X+M,
write_item(X); write_item(X);
read_item(Y);
Y=Y+N,

write_item(Y);

= Tu: by, ra(X), wi(X), (), wi(Y), €1
= T by, 1x(Y), Wa(Y), €;

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 7

Initial Concepts

Schedule

* Sequence of interleaved operations from multiple TAs
* Example:

- S bl’ rl(s)l b2’ rz(c)- Wl(s)1 I’l(C), Wz(C)v W1(C)v €1, €,

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 9

Quiz

What can be concluded from the following schedule?
.., I,(EMPLOYEE), b,, w,(STUDENT), ...

A: Some employee has read a student record.

B: A transaction has read some data and then written it back.
C: At least three transactions were running concurrently.

D: All of the above.

E: None of the above.

Il LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 10

Serial Schedules

* Definition: a schedule is serial if the operations of any
TA are executed directly one after the other
- i.e., no interleaving of operations from different TAs

* Characteristics:

- Serial schedules trivially guarantee the isolation property
- For n transactions, there are n! serial schedules

Each of them produces a correct result (assuming the

consistency preservation property)

- However, not all of them might produce the same result
For instance, If two people try to reserve the last seat
on a plane, only one gets it. The serial order
determines which one. The two orderings have
different results, but either one is correct.

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 1

Serial Schedules (cont'd)

Serial schedules are not feasible for performance reasons:
* Long transactions force other transactions to wait

* When a transaction is waiting for disk 1/0 or any other
event, system cannot switch to other transaction

* Solution: allow some interleaving
(without sacrificing correctness!)

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 12

Acceptable Interleavings

II LINKOPING
o' UNIVERSITY

Conflicts

* Executing some operations in a different
order causes a different outcome
= (X)), Wwo(X), ... vs. L wa(X), (X), ...

T, will read a different value for X

= oW (), Wo(Y), ... vs. o wa(Y), wa(Y), ...

value for Y after both operations will be different

* Note that two read operations do not have this issue
- .12, 2, ... vs. ..n2),n2,...

both TAs read the same value of Z

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 14

Conflicts and Equivalence

Definition: Two operations conflict if

1. they access the same data item X,

2. they are from two different transactions, and
3. at least one of them is a write operation.

Definition: Two schedules are conflict equivalent if
the relative order of any two conflicting operations is
the same in both schedules.

Example:
S1: by, 1y(S), by, 1,(C), Wy(S), 11(C), W,(C), W, (C), &, €,

S2: by, 1y(8), 1,(C), by, 1,(C), W, (S), W,(C), wy(c), €,, &,

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 15

Serializability

Definition: A schedule with n transactions is serializable
if it is conflict equivalent to some serial schedule of
the same n transactions.

* Serializable schedule “correct” because
equivalent to some serial schedule, and
any serial schedule acceptable
- Transactions see data as if they were executed serially
- Transactions leave DB state as if they were executed
serially (hence, serializable schedules will leave the
database in a consistent state)

« Efficiency achievable through interleaving
and concurrent execution

Il.u LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 16

Testing Serializability

* Construct a serialization graph for the schedule
- Node for each transaction in the schedule
- Direct edge from T; to T; if some read or write operation
in T; appears before a conflicting operation in T;

* Aschedule is serializable if and only if
its serialization graph has no cycles

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 17

Example

* Consider the following schedule
S: bl‘ rl(X)i b2' rZ(Y)l Wl(X)Y b3l WZ(Y)Y e2! rl(Y)i r3(X)l e3l Wl(Y)i el

* Serialization graph of S: e e

* No cycles! Hence, S is serializable.
- Equivalent to the following serial schedule:

...
~

II." LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 18

ui

« If the initial value of checking is $500, what value does it
have after the following interleaved execution completes?

A: $480 B: $500 C: $580 D: $600
- S bl’ rl(s)l b21 rz(C)r Wl(s)l r1(C)u WZ(C), W1(C)v €, &

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 19

Key Question

Can we make sure that we only get serializable schedules?

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 20

Locking Techniques
for Concurrency Control

Database Locks

* Locks can be used to ensure that
conflicting operations cannot occur

» Exclusive lock for writing, shared lock for reading
- Transaction cannot read item without first

getting a shared or an exclusive lock on it
- Transaction cannot write item without first
getting exclusive lock on it ‘ .

11

Il.u LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 2

Database Locks (cont'd)

* Request for lock may cause transaction to
block (wait) because write lock is exclusive
- Any lock on X (read or write) cannot be granted
if some other transaction holds write lock on X
- Write lock on X cannot be granted if some
other transaction holds any lock on X

* Blocked transactions are unblocked
and granted the requested lock
when conflicting transaction(s)
release their lock(s)

-

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 23

Two-Phase Locking (2PL)

Definition: A transaction follows the two-phase locking
(2PL) protocaol if all of its read_lock() and write_lock()
operations come before its first unlock() operation.

* Atransaction that follows the 2PL protocol has
an expansion phase and a shrinking phase

« |f all transactions in a schedule follow the 2PL
protocol, then the schedule is serializable

II LINKOPING Database Technology
UNIVERSITY Topic 10: Transactions and Concurrency Control 2

Deadlock

* Two or more transactions wait for one
another to unlock some data item
- T,waits for T, waits for ... waits for T, waits for T,

Deadlock prevention:
- Conservative 2PL protocol: Wait until you
can lock all the data to be used beforehand

Starvation

* Atransaction is not executed for an indefinite period
of time while other transactions are executed normally
- e.g., T waits for write lock and other TAs repeatedly
grab read locks before all read locks are released

* Starvation prevention:

Summary

www.liu.se

LINKOPING
II.“ UNIVERSITY

it-di - First-come-first-served waiting scheme
Wait-die _ - Wait-die
Wound-wait - Wound-wait
- No waiting - etc
- Cautious waiting
» Deadlock detection:
- Wait-for graph
- timeouts
iz oo . [S .
Summary

* Characterizing schedules based on serializability
- Serial and non-serial schedules
- Conflict equivalence of schedules
- Serialization graph
* Two-phase locking
- Guarantees conflict serializability
- Possible problems: deadlocks and starvation

Il LINKOPING Database Technology

UNIVERSITY Topic 10: Transactions and Concurrency Control

