
Database Technology

Topic 8: Data Structures
 for Databases
Olaf Hartig
olaf.hartig@liu.se

2
Database Technology
Topic 8: Data Structures for Databases

Database System

Storage Hierarchy

4
Database Technology
Topic 8: Data Structures for Databases

Storage Hierarchy

Im
ag

e
so

u
rc

e:
 h

tt
ps

:/
/w

w
w

.p
db

m
bo

ok
.c

om
/v

au
lt/

C
ha

p
te

r%
20

P
h

ys
ic

al
%

2
0F

ile
%

20
O

rg
an

iz
a

tio
n

%
20

a
nd

%
2

0I
nd

ex
in

g
.p

df
/a

cc
es

s

(fast, small, expensive,
 accessible by CPU)

(slow, big, cheap,
 inaccessible by CPU)

● Reading from / writing to disk is a major bottleneck!
– CPU instruction: ca. 1 ns (10–9 secs)
– Main memory access: ca. 10 ns (10–8 secs)
– Disk access: ca. 1 ms (1M ns, 10–3 secs)

database
stored here

https://www.pdbmbook.com/vault/Chapter%20Physical%20File%20Organization%20and%20Indexing.pdf/access

5
Database Technology
Topic 8: Data Structures for Databases

Magnetic Hard Disk Drives

6
Database Technology
Topic 8: Data Structures for Databases

Magnetic Hard Disk Drives

● Formatting divides the hard-coded
sector into equal-sized blocks
– Typical block sizes: 512 – 8192 bytes

● Block is the unit of data transfer
between disk and main memory

Files and Records

● Block is the unit of data transfer
between disk and main memory

8
Database Technology
Topic 8: Data Structures for Databases

● Formatting divides the hard-coded
sector into equal-sized blocks
– Typical block sizes: 512 – 8192 bytes

● Block is the unit of data transfer
between disk and main memory
– Records are allocated to file blocks

● Data stored in files
● File is a sequence of records
● Record is a set of field values
● For instance,

– file = relation
– record = row
– field = attribute value

Terminology

9
Database Technology
Topic 8: Data Structures for Databases

● Blocking factor (bfr) is the
number of records per block

● Assume
– r is the number of records in a file,
– R is the size of a record, and
– B is the block size in bytes,

then:

● Blocks needed to store the file:

● Space wasted per block = B – bfr * R

Blocking Factor

bfr=⌊ BR ⌋

b=⌈ r
bfr ⌉

10
Database Technology
Topic 8: Data Structures for Databases

Spanned Records

… avoid wasting space

block i record 1 record 2 wasted

block i record 1 record 2 rec.3 p

block i+1 rec.3 record 4 record 5

block i+1 record 3 record 4 wasted

Unspanned

Spanned

11
Database Technology
Topic 8: Data Structures for Databases

Allocating File Blocks on Disk

● Contiguous allocation: file blocks allocated
 consecutively (one
 after another)
– Fast sequential access, but expanding is difficult

● Linked allocation: each file block contains
 a pointer to the next one
– Expanding the file is easy, but reading is slower

● Linked clusters allocation: hybrid of the two above
– i.e., linked clusters of consecutive blocks

● Indexed allocation: index blocks contain pointers
 to the actual file blocks

File Organization

(Organizing Records in Files)

13
Database Technology
Topic 8: Data Structures for Databases

Heap Files

● Records are added to the end of the file

● Adding a record is cheap

● Retrieving, removing, and updating a record
is expensive because it implies linear search

– Average case: block accesses*

– Worst case: b block accesses

● Record removal also implies waste of space
– Periodic reorganization

⌈ b2 ⌉

*recall, b is the number of blocks of the file

14
Database Technology
Topic 8: Data Structures for Databases

Sorted Files

● Records ordered according to some field

● Ordered record retrieval is cheap (i.e., on
the ordering field, otherwise expensive)
– All the records: access the blocks sequentially
– Next record: probably in the same block
– Random record: binary search; hence,

 block accesses in the worst case*

● Adding a record is expensive, but removing
is less expensive (deletion markers and
periodic reorganization)

⌈ log 2b ⌉

*recall, b is the number of blocks of the file

15
Database Technology
Topic 8: Data Structures for Databases

Hash Files

● File is logically split into “buckets”
– Bucket: one or several contiguous disk blocks
– Table converts bucket number into address of block

● Choose a field of the records to be the hash field
● Given a record, which bucket does it belong to?

– apply hash function h to the value x
that the record has in its hash field

– resulting hash value h(x) is the number
of the bucket into which the record goes

● Cheapest random retrieval (when searching for equality)

● Ordered record retrieval is expensive

Indexes

(Secondary Access Methods)

17
Database Technology
Topic 8: Data Structures for Databases

Motivation

● File organization (heap, sorted, hash) determines
primary method to access data in a file

● e.g., sequential search, binary search, hash-based
● However, this may not be fast enough
● Solution: index files

– introduce secondary access methods
– goal: speed up access under specific conditions
– there exist various types of index structures

● Outline:
1) Single-level ordered indexes (primary,

secondary, and clustering indexes)

2) Multilevel indexes

3) Dynamic multilevel indexes (B+-trees)

Single-Level Ordered Indexes

19
Database Technology
Topic 8: Data Structures for Databases

Primary Index

● Assumptions:
– Data file is sorted
– Ordering field F is a key

● Primary index: an additional
 sorted file whose records
 contain two fields:

V - one of the values of F
P - pointer to a disk block
 of the data file

● One index record (V,P) per
data block such that the first
data record in the data block
pointed to by P has V as the
value of the ordering key F

sorted file with all the records
● sorted by name, and
● name is a key

: :
: :

index file (sorted)
with one record per
block in the data file

20
Database Technology
Topic 8: Data Structures for Databases

Primary Index (cont'd)

● Why is it faster to access a random record via a
binary search in the index than in the data file?
– Index file is much smaller than the data file because:

(a) Number of index records << number of data records

(b) Index records smaller than data records (i.e., higher
 blocking factor for the index file than for the data file)

– Much smaller file → binary search converges must faster!

● There is a cost of maintaining the index!

21
Database Technology
Topic 8: Data Structures for Databases

Clustering Index

● Assumptions:
– Data file is sorted
– Ordering field F is

not a key (hence,
we cannot assume
distinct values)

● Clustering index: additional sorted file
 whose records contain two fields:

V - one of the values of F
P - pointer to a disk block
 of the data file

● One index record (V,P) for each
distinct value V of the ordering
field F such that P points to the
first data block in which V appears

sorted file with all the records
● sorted by Dept
● Dept is not a key

: :
: :

index file (sorted)
with one record per
possible Dept value

22
Database Technology
Topic 8: Data Structures for Databases

Clustering Index

● Attention: after binary
search in the index file,
multiple data file blocks
may need to be accessed
– see, for instance, Dept=2

● Index file also smaller here, but not
as much as for a primary index
– number of index records ≤ number of data records
– at least, index records smaller than data records

(like in a primary index)

: :
: :

23
Database Technology
Topic 8: Data Structures for Databases

Secondary Indexes on Key Field

● Index on a non-ordering key field F
– Data file may be sorted or not

● Secondary index: additional sorted file
 whose records contain two fields:

 V - one of the values of F
 P - pointer to the data file
 block that contains the
 record with V for F

● One index record
per data record

● Searching based on
a value of F can now
be done with a binary
search in the index

25
Database Technology
Topic 8: Data Structures for Databases

Secondary Indexes on Non-Key

● Index on a
non-ordering
non-key field

26
Database Technology
Topic 8: Data Structures for Databases

Secondary Indexes on Non-Key

● Index on a
non-ordering
non-key field

27
Database Technology
Topic 8: Data Structures for Databases

Secondary Indexes on Non-Key

● Index on a
non-ordering
non-key field

● also called
inverted file

28
Database Technology
Topic 8: Data Structures for Databases

Summary of Single-Level Indexes

Index field used
for sorting the data records

Index field not used for
sorting the data records

Index field is a key Primary index Secondary index (key)

Index field is not a key Clustering index Secondary index (non-key)

Type of index Number of
index entries

Primary Number of blocks
in data file

Clustering Number of distinct
index field values

Secondary
(key)

Number of records
in data file

Secondary
(non-key)

Number of records
or number of distinct
index field values

Multilevel Indexes

30
Database Technology
Topic 8: Data Structures for Databases

Multilevel Indexes

● Index on index (first level, second level, etc.)
● Works for primary, clustering, and secondary

indexes as long as the first-level index has
a distinct index value for every entry

● How many levels?
– until the highest level

fits into a single block

● Such a full multilevel index is a tree
– single block of highest level

is the root node in this tree

● How many block accesses to retrieve a random record?
– number of index levels + 1

33
Database Technology
Topic 8: Data Structures for Databases

Multilevel Indexes (cont'd)

● When using a (static) multilevel index, record insertion,
deletion, and update may be expensive because all the
index levels are sorted files

● Solutions:
– Overflow area + periodic reorganization
– Dynamic multilevel indexes that leave

some space in index blocks for new
entries (e.g., B-trees and B+-trees)

B+-Trees

Dynamic Multilevel Indexes

35
Database Technology
Topic 8: Data Structures for Databases

Example B+-Tree

36
Database Technology
Topic 8: Data Structures for Databases

Internal Nodes of a B+-Tree

● q ≤ p (where p is the order of the B+-tree)
● Every Ki is an index value, every Pi is a tree pointer
● Within each node: K1 < K2 < … < Kq–1
● For every value X in the Pi subtree: Ki–1 < X ≤ Ki
● Each internal node (except the root) must be at least half full

– i.e., there must be at least tree pointers⌈ p
2 ⌉

37
Database Technology
Topic 8: Data Structures for Databases

Leaf Nodes of a B+-Tree

 Prq K1 Pr1 Ki Pri Kq Pnext……

● q ≤ p (where p is the order for leaf nodes of the B+-tree)

● Every Ki is an index value

● Every Pri is a data pointer to the data file block
that contains the record with index value Ki

● Pnext is a pointer to the next leaf node

● Within each node: K1 < K2 < … < Kq

● Every leaf node must be at least half full

– i.e., at least index values in each leaf node⌈ p
2 ⌉

38
Database Technology
Topic 8: Data Structures for Databases

Retrieval of Records in a B+-Tree

● Very fast retrieval of a random record

● Number of block accesses: depth of tree + 1

39
Database Technology
Topic 8: Data Structures for Databases

Depth of a B+-Tree

● Given that internal nodes must have at least children,

● For a depth of d, the number N of leaf nodes is at least

● Hence, in the worst case, d is at most

● Best case:

⌈ p
2 ⌉

⌈ p
2 ⌉

d

⌈ log⌈ p2 ⌉
N ⌉

⌈ log pN ⌉

40
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

41
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

42
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

43
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

44
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

45
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

46
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

47
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

48
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

Summary

50
Database Technology
Topic 8: Data Structures for Databases

Summary

● Storage hierarchy
– Accessing disk is major bottleneck

● Organizing records in files
– Heap files, sorted files, hash files

● Indexes
– Additional sorted files that provide

efficient secondary access methods
● Primary, secondary, and clustering indexes
● Multilevel indexes

– Retrieval requires reading fewer blocks
● Dynamic multilevel indexes

– Leave some space in index blocks for new entries
– B-tree and B+-tree

www.liu.se

