Database Technology

Topic 8: Data Structures
for Databases

Olaf Hartig

olaf.hartig@liu.se

LINKOPING
II." UNIVERSITY

UsarsPrograr Database System

Database l
System

Application Programs/Queries

DEMS Y
Software

Software to Process
Queries/Programs

- .
e’ ¢.~~
Y 4
.

Software to Access I
Stored Data N\

&5

Stored Databa‘ag A
Definition s Stored Database “
(Meta-Data) I N ;
] s & |—] g Figure 1.1
~ e ¢ A simplified database
S s - . 4 system environment,
~

II |_|NKOD|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

Storage Hierarchy

LINKOPING
II.“ UNIVERSITY

Storage Hierarchy

CPU registers
Primary storage
(volatile)

(fast, small, expensive, Central storage
accessible by CPU)

High speed cache

‘ e HDD or SSD

I/O Boundary

Secondary storage
(persistent) ‘

(slow, big, cheap,
inaccessible by CPU) database

stored here

Tape and/or optical media

'\
)
R
o
)
)
)
o
)
““““
tY)
\y
R
(\
XY
"y
)
o
Ry

* Reading from / writing to disk is a major bottleneck!
- CPU instruction: ca. 1 ns (107 secs)
- Main memory access: ca. 10 ns (107° secs)
- Disk access: ca. 1 ms (1M ns, 107° secs)

II |_|NKOD|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

Image source: https://www.pdbmbook.com/vault/Chapter%20Physical%20File%200rganization%20and%20Indexing.pdf/access

https://www.pdbmbook.com/vault/Chapter%20Physical%20File%20Organization%20and%20Indexing.pdf/access

Magnetic Hard Disk Drives

<— spindle

«— arm assembly

sector s

I

I

I

; I
cylinder ¢ —>!
I

I

platter ﬂ
rotation
II LINKOPING Database Technology
[) UNIVERSITY Topic 8: Data Structures for Databases 5

Magnetic Hard Disk Drives

<— spindle

sector s

A
* Formatting divides the hard-coded
sector into equal-sized blocks

- Typical block sizes: 512 — 8192 bytes
 Block is the unit of data transfer

between disk and main memory

— arm assembly

II “ |_|NKOD|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

Files and Records

LINKOPING
II.“ UNIVERSITY

Terminology

Data stored in files
File is a sequence of records
Record is a set of field values

For instance,

- file = relation

- record = row

- field = attribute value

 Block is the unit of data transfer
between disk and main memory
- Records are allocated to file blocks

II |_|NKOD|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

Blocking Factor

Blocking factor (bfr) is the
number of records per block

Assume
— ris the number of records in a file,
— R is the size of a record, and

— B is the block size in bytes,

then: B

bferE

Blocks needed to store the file: p=|_

Space wasted per block = B—bfr * R

v

r

LIN KODI NG Database Technology
UNIVERSITY Topic 8: Data Structures for Databases

Spanned Records

... avoid wasting space

[block i
Unspanned | _
block i+1
[block i
Spanned
block i+1

record 1 record 2 wasted
record 3 record 4 wasted
record 1 record 2 rec.3 |p
v

rec.3 record 4 record 5

LINKOPING
II.“ UNIVERSITY

Database Technology

Topic 8: Data Structures for Databases

Allocating File Blocks on Disk

* Contiguous allocation: file blocks allocated
consecutively (one
after another)
- Fast sequential access, but expanding is difficult

Linked allocation: each file block contains
a pointer to the next one
- Expanding the file is easy, but reading is slower

Linked clusters allocation: hybrid of the two above
- l.e., linked clusters of consecutive blocks

Indexed allocation: index blocks contain pointers
to the actual file blocks

II LINKOP|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 1

File Organization

LINKOPING
II.“ UNIVERSITY

Heap Files

* Records are added to the end of the file

Adding a record is cheap

* Retrieving, removing, and updating a record
IS expensive because it implies linear search

b »
- Average case: > block accesses

— Worst case: b block accesses

* Record removal also implies waste of space
- Periodic reorganization

‘recall, b is the number of blocks of the file

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 13

Sorted Files

* Records ordered according to some field

* Ordered record retrieval is cheap (i.e., on
the ordering field, otherwise expensive)
— All the records: access the blocks sequentially
— Next record: probably in the same block
- Random record: binary search; hence, |log,b|
block accesses in the worst case’

* Adding a record is expensive, but removing
IS less expensive (deletion markers and
periodic reorganization)

‘recall, b is the number of blocks of the file

Database Technology

II LINKOPING
. UNIVERSITY Topic 8: Data Structures for Databases 14

Hash Files

File is logically split into “buckets”
— Bucket: one or several contiguous disk blocks
— Table converts bucket number into address of block

Choose a field of the records to be the hash field

Given a record, which bucket does it belong to?

- apply hash function h to the value x
that the record has in its hash field

- resulting hash value h(x) is the number
of the bucket into which the record goes

Cheapest random retrieval (when searching for equality)

Ordered record retrieval is expensive

II “ LIN KODI NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

15

Indexes

LINKOPING
II.“ UNIVERSITY

Motivation

File organization (heap, sorted, hash) determines
primary method to access data in a file
* e.g., sequential search, binary search, hash-based

However, this may not be fast enough

Solution: index files

— Introduce secondary access methods

— goal: speed up access under specific conditions
- there exist various types of index structures

Outline:

1) Single-level ordered indexes (primary, |
secondary, and clustering indexes)

2) Multilevel indexes
3) Dynamic multilevel indexes (B+-trees)

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 17

Single-Level Ordered Indexes

LINKOPING
II.“ UNIVERSITY

(Andersson, Anders) i
1 > Block 1
P rl m a ry I n d eX (Andersson, Nils))
(Andersson, Sven) i
Block 2
(Andersson, Anders) / Torea hieT [Blec
And , S A ! .
* Assumptions: : ' . Block 3
. . (Nilsson, Johan) ~
- Data file is sorted (Svensson, Kar) [N~ lLersson. Anders) J
. . . i et
— Ordering field F is a key il .
. . . b __ [
* Primary index: an additional \ (efer ron Jomen) J

sorted file whose records
contain two fields:
V - one of the values of F |
P - pointer to a disk block sorted file with all the records

of the data file | e sorted by name, and
* One index record (V,P) per ~* nameis akey
data block such that the first N
data record in the data block mﬁézfrgfgﬁzdger
pointed to by P has V as the block in the data file
value of the ordering key F

4

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 19

Primary Index (cont'd)

Andersson, Anders)

Andersson, Sven)

Davidsson, Nils)

Nilsson, Johan)

(
(
(
(
(

Svensson, Karl)

4
[ey

(Andersson, Anders)

(Andersson, Nils)

(Andersson, Sven)

(Bengtsson, Anders)

(Davidsson, Nils)

(Larsson, Anders)

(Nilsson, Johan)

(Petersson, Jérgen)

* Why is it faster to access a random record via a
binary search in the index than in the data file?

- Index file is much smaller than the data file because:
(a) Number of index records << number of data records

(b) Index records smaller than data records (i.e., higher
blocking factor for the index file than for the data file)

— Much smaller file - binary search converges must faster!

* There is a cost of maintaining the index!

Y

"

N

v

LINKOPING
UNIVERSITY

Database Technology

Topic 8: Data Structures for Databases

20

Block 1

Block 2

Block 3

Block 4

Clustering Index

Index Data File

* Assumptions:
- Data file is sorted
— Ordering field F is
not a key (hence,
we cannot assume b
distinct values)

| (W=
N

* Clustering index: additional sorted file

whose records contain two fields:
V - one of the values of F
P - pointer to a disk block
of the data file

* One index record (V,P) for each
distinct value V of the ordering
fleld F such that P points to the
first data block in which V appears

7

Dept: Name ID Salary

1 Andersson | 12 2000

1 S 13| 4000

1 vensson Block 1
2

7,

3 Block 2
3

4

5

2 Block 3
5 ocC

5

A

sorted filé with all the records
e sorted by Dept
 Deptis not a key

iIndex file (sorted)
with one record per
possible Dept value

II LINKOP|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

21

Clustering Index

Index Data File

* Attention: after binary

search in the index file,

multiple data file blocks

| (W=
N

7

may need to be accessed
- see, for instance, Dept=2

Dept: Name ID Salary
1 Andersson | 12 | 2000
1 Svensson | 13| 4000
1
=
2
S
3
4
5
5
D
5

* |Index file also smaller here, but not

as much as for a primary index
- number of index records < number of data records

- at least, index records smaller than data records

(like in a primary index)

II LINKOP|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

Block 1

Block 2

Block 3

Secondary Indexes on Key Field

Index on a non-ordering key field F
- Data file may be sorted or not

* Secondary index: additional sorted file
whose records contain two fields:

V - one of the values of F

P - pointer to the data file

block that contains the

record with V for F
e One index record Index Data File
per data record 3452626 | -
4945864
* Searching based on 5012128 |
6487539 7
a value of F can now =00
be done with a binary 7299990
. . 8232333 !
search in the index L
II LIN KOPI NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

Data File

ID# SSN Dept. Salary

1 4945864 | 12| 2000

2 7000111 | 13| 4000 Bl

3

4

5 6487539 h

6 7299990 —

7 3452626

8 9000013 J

9 8232333 b

L > Block 3

11 | 5012128 W

12

23

Secondary Indexes on Non-Key

Option 1 Data File

¢ |nd6X on a ID# Name Dept. Salary
non_ordering Dense Index 1 Daniels 12 2000
. 2 Lancaster | 13| 4000 Block 1
non'key field 3 | Andersson oc
Index Data File 4 Andersson
Andersson 5 Silver A
Andersson 6 Molin L Block 2
Andersson N 7 French
Daniels] 8 Daniels J
Daniels
9 Andersson A
French
e 10 Hagberg L Block 3
] =) etrg . 11 Yang e
ancaster 12 Miller)
Option 2 5 o <y, Detafie Option 3 j,—na File
=" =
II LIN KODI NG Database Technology
[) UNIVERSITY Topic 8: Data Structures for Databases 25

Secondary Indexes on Non-Key

Option 2

¢ |ndeX on a ID# Name Dept. Salary
non_ordering Repeating field 1 Daniels | 12| 2000
. with pointers 2 Lancaster | 13| 4000
non-key field 3 | Andersson
Index Data File 4 Andersson
Andersson : S|Iv§r
Daniels . Molin
= n 7 French
TG ’ 8 Daniels
Hagberg 2
Lancaster 9 Andersson
10 Hagberg
11 Yang
12 Miller
Option 1 - - Data File
el _Dépt: Ssid Option 3

Data File

Block 1

> Block 2

> Block 3

LINKOPING
UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

26

Secondary Indexes on Non-Key

* |[ndex on a Option 3

non-ordering
non-key field

* also called
inverted file

French o1

Option 1 Option 2

Level of indirection
with record pointers

Index Data File
Andersson |¢

Daniels 0'/

Hagberg |e——

Lancaster o\
- D

Data File

ID# Name

ol 1 Daniels
o - Lancaster
\v 3 Andersson
s 4 Andersson

D Silver

= 6 Molin
i French

8 Daniels
. \ 9 | Andersson
] 10 Hagberg
11 Yang

12 Miller

Database Technology
Topic 8: Data Structures for Databases

II LINKOPING
[) UNIVERSITY

27

Summary of Single-Level Indexes

Index field used Index field not used for
for sorting the data records sorting the data records

Index field is a key Primary index Secondary index (key)
Index field is not a key Clustering index Secondary index (non-key)
Type of index Number of
index entries
Primary Number of blocks
in data file
Clustering Number of distinct
index field values
Secondary Number of records
(key) in data file
Secondary Number of records
(non-key) or number of distinct

index field values

II L[NKOP|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 28

Multilevel Indexes

LINKOPING
II.“ UNIVERSITY

Multilevel Indexes

Index on index (first level, second level, etc.)

Works for primary, clustering, and secondary

Indexes as long as the first-level index has

15

a distinct index value for every entry

fleldleQ

35

39

44

a1

elelple

55

How many levels? E//
- until the highest level 5 a\
f|tS |nt0 a S|ng|e bIOCk Second Level

63

71

80

Ll1[elp]|P9

85

Such a full multilevel index is a tree

First Level

IR

- single block of highest level
IS the root node in this tree

How many block accesses to retrieve a random record?

- number of index levels + 1

LIN KOPI NG Database Technology
UNIVERSITY Topic 8: Data Structures for Databases

30

9|14 ejeq

Multilevel Indexes (cont'd)

* When using a (static) multilevel index, record insertion,
deletion, and update may be expensive because all the
Index levels are sorted files

e Solutions:

- Overflow area + periodic reorganization

— Dynamic multilevel indexes that leave
some space in index blocks for new
entries (e.g., B-trees and B+-trees)

II |_|NKOD|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

33

B*-Trees

LINKOPING
II.“ UNIVERSITY

Example B*-Tree

Andersson

Hagberg

French

Silver

Daniels

2 |Young

Zhing

0O W|m|lWN|= (0o

Baker

10 30/ 50 ®» GO 7 0|le» 8o ®&» 90| 120

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 35

Internal Nodes of a B*-Tree

i g-1 q

Pl K] e K;'_l 1)? K ceoe K P
|
|

X <K, K. <X<K K
* g<p (where pisthe order of the B*-tree)
 Every K;is an index value, every P; is a tree pointer
* Within each node: K; <K, <... <K,

 For every value X in the P, subtree: K_; < X £ K

* Each internal node (except the root) must be at least half full

- l.e., there must be at least | P | tree pointers
2

II “ LIN KODI NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 36

Leaf Nodes of a B*-Tree

K, Pr; |... Ki Pr; Kq Prq Prext

* g<p (where p is the order for leaf nodes of the B*-tree)

* Every K;Is an index value

 Every Pr;is a data pointer to the data file block
that contains the record with index value K;

* P, IS a pointer to the next leaf node
* Within each node: K; <K, <... <K,

* Every leaf node must be at least half full
p

2

- l.e., at least Index values in each leaf node

II |_|NKOD|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

Retrieval of Records in a B*-Tree

* Very fast retrieval of a random record

* Number of block accesses: depth of tree + 1

Andersson

Hagberg

French

Silver

Daniels

2 |Young

Zhing

OO |W N | =010

Baker

/ IV

10 30/ 50 ®» GO 7 0|le» 8o ®&» 90| 120

II “ LIN KODI NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 38

Depth of a B*-Tree

* Hence, In the worst case, d IS at most

* Best case:

log, N

[

® 5 K

10

30/ ¥ 50

log[

. . P
Given that internal nodes must have at least

b
2

2

For a depth of d, the number N of leaf nodes is at least

"

children,

d
P
2

Andersson

Hagberg

French

Silver

Daniels

2 |Young

Zhing

OO |W N | =010

Baker

6o

AN

80

®» 90| 120

LINKOPING
UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

39

B*-Tree Insertion

Insert: 8

]

LINKOPING
UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

40

B*-Tree Insertion

Insert: 5

LINKOPING
UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

41

B*-Tree Insertion

Insert: 1

59| 8 |® I Overflow — create a new level

LINKOPING
UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

42

B*-Tree Insertion

Insert: 7
II |_|NKOD|NG Database Technology
. UNIVERSITY Topic 8: Data Structures for Databases 43

B*-Tree Insertion

Overflow - Split

Insert: 3

II LINKOPING
[) UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

44

B*-Tree Insertion

Insert: 12

Overflow - Split
Propagates a new level

LINKOPING
UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

45

B*-Tree Insertion

Insert: 9

46

Database Technology
Topic 8: Data Structures for Databases

II LINKOPING
[) UNIVERSITY

B*-Tree Insertion

1| 5 |
i
_.»’//
/,f”

- J *\ 8

II H'\H '.

v 3! ' \
AN SO | T (NG] 7'8' e [0 e

Overflow — Split, propagates
Insert: 6

Database Technology
Topic 8: Data Structures for Databases

II LINKOPING
[) UNIVERSITY

B*-Tree Insertion

.»-f'/a
,..--"/. -
.-)"-/.
| 3 1
| I\"'\,\
v - z
11° 3 |® > | 5 |e . 2.
Resulting B+-tree
48

Database Technology

II LINKOPING
® UNIVERSITY Topic 8: Data Structures for Databases

Summary

LINKOPING
II.“ UNIVERSITY

Summary

e Storage hierarchy
— Accessing disk is major bottleneck

* Organizing records in files
- Heap files, sorted files, hash files

* |Indexes
— Additional sorted files that provide
efficient secondary access methods

* Primary, secondary, and clustering indexes

* Multilevel indexes
- Retrieval requires reading fewer blocks

* Dynamic multilevel indexes
- Leave some space in index blocks for new entries
- B-tree and B+-tree

II |_|NKOD|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

50

www.liu.se

LINKOPING
II." UNIVERSITY

