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Traditional Storage Hierarchy

CPU
I
~
» Cache memory Primary storage
. > (fast, small, expensive, volatile,
* Main memory accessible by CPU)
/
I
~
e Disk Secondary storage
>(s|ow, big, cheap, permanent,
° Tape inaccessible by CPU)
/
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Properties of Using Magnetic Disks

* Formatting divides the hard-coded
sector into equal-sized blocks

- Block is the unit of data transfer

between disk and main memory

- Typical block sizes: 512 — 8192 bytes
* Read/write from/to disk is a major bottleneck!

R/W time = seek time + rotational delay + block transfer

(search track) (search block) time

S— 7
e —
12—60 ms

- CPU instruction: ca. 1 ns (10~ secs)
- Main memory access: ca. 10 ns (107° secs)
- Disk access: ca. 1 ms (1M ns, 10~° secs)
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Files and Records
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Terminology

* Data stored In files
* File is a sequence of records
* Records are allocated to file blocks
* Record is a set of field values
* For instance, 4
- File = relation
- Record = row
- Field = attribute value
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Blocking Factor

Blocking factor (bfr) is the number of records per block

* Assume |
— ri1s the number of records In a file, |
— R Is the size of a record, and

— B is the block size in bytes,
then:

bfr:lE

R

b

Blocks needed to store the file: p=

i
bfr

* Space wasted per block = B— bfr * R
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Spanned Records

... avoid wasting space

[ block i
Unspanned | _
block i+1
[ block i
Spanned
block i+1

record 1 record 2 wasted
record 3 record 5 wasted
record 1 record 2 rec.3 |p
v

rec.3 record 4 record 5
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Allocating File Blocks on Disk

* Contiguous allocation: file blocks allocated
consecutively (one
after another)
- Fast sequential access, but expanding is difficult

Linked allocation: each file block contains
a pointer to the next one
- Expanding the file is easy, but reading is slower

Linked clusters allocation: hybrid of the two above
- l.e., linked clusters of consecutive blocks

Indexed allocation: index blocks contain pointers
to the actual file blocks
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File Organization
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Heap Files

* Records are added to the end of the file
* Adding a record is cheap

* Retrieving, removing, and updating a record
IS expensive because it implies linear search

- Average case: |b| block accesses
2

— Worst case: b block accesses
(recall, b is the number of blocks of the file)

* Record removal also implies waste of space
- Periodic reorganization
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Sorted Files

* Records ordered according to some field

* Ordered record retrieval is cheap (i.e., on
the ordering field, otherwise expensive)
— All the records: access the blocks sequentially
— Next record: probably in the same block
- Random record: binary search; hence, |log,b|
block accesses in the worst case

* Adding a record is expensive, but removing
IS less expensive (deletion markers and
periodic reorganization)
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Binary Search

key 15 11
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Internal Hashing

Choose a field of the records to be the hash field

Applying hash function h to the value x of the hash
field returns the position of the record in the file

- e.g., h(x)=xmodr
(recall, r is the number of records In the file)

Collision: different field values hash to same position

Solutions to deal with collisions (collision resolution):
- Check subsequent positions until one is empty

- Use a second hash function

— Put the record in an overflow area and link it
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External Hashing

* Hashing for disk files

* Applying hash function to the value of the hash field
returns a bucket number (instead of a position)
— Bucket: one or several contiguous disk blocks
— Table converts bucket number into address of block

* Collisions are typically resolved via overflow area

* Cheapest random retrieval
(when searching for equality)

* Ordered record retrieval is expensive
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Overview

* Seen so far: file organization
- Analogous to organization of books into chapters,
sections, etc.
- Determines primary method to access data in a file
* e.g., sequential search, binary search

* Now: index structures
— Allow for secondary access methods
— Analogous to the index of a book
- Goal: speed up access under specific conditions
— Outline:
1) Single-level ordered indexes (primary,
secondary, and clustering indexes)
2) Multilevel indexes
3) Dynamic multilevel indexes (B+-trees)

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 19



Single-Level Ordered Indexes
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Primary Index

* Assumptions:
- Data file is sorted

Andersson, Anders)

“

Andersson, Sven)

/_’—’/]'

Nilsson, Johan)

(
(
(Davidsson, Nils)
(
(

Svensson, Karl)

— Ordering field F is a key

* Primary index: an additional
sorted file whose records

contain two fields:

V - one of the values of F
P - pointer to a disk block of the data file

* One index record (V,P) per data block such that
the first data record in the data block pointed to
by P has V as the value of the ordering key F

N\

(Andersson, Anders)

(Andersson, Nils)

(Andersson, Sven)

(Bengtsson, Anders)

(Davidsson, Nils)

(Larsson, Anders)

(Nilsson, Johan)

(Petersson, Jérgen)

Y

"

N

v
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(Andersson, Anders)

Primary Index (cont'd)  Bock

(Andersson, Nils)

(Andersson, Sven)
/' > Block 2
Andersson, Anders) (Bengtsson, Anders) )

Andersson, Sven) | ] :

_—Y|(Davidsson, Nils)

Nilsson, Johan) ~

Svensson, Karl) \(Larsson, Anders) <
(Nilsson, Johan)
> Block 4
(Petersson, Jorgen) |

* Why is it faster to access a random record via a
binary search in the index than in the data file?
— Number of index records << number of data records
- Index records smaller than data records (i.e., higher
blocking factor for the index file than for the data file)

(
(
(Davidsson, Nils) =
(
(

* What is the cost of maintaining a primary index?
(if the order of the data records changes)
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Clustering Index

Index Data File

* Assumptions:
- Data file is sorted
— Ordering field F is
not a key (hence,
we cannot assume
distinct values)

Dept#

Name

D

Salary

1

Andersson

12

2000

Svensson

13

4000

(W (M N | ==

| (W=

7

(R Re [ d) M|

* Clustering index: additional sorted file

whose records contain two fields:
V - one of the values of F
P - pointer to a disk block of the data file

* One index record (V,P) for each distinct value V of

the ordering field F such that P points to the first data

block in which V appears

} Block 1
} Block 2

} Block 3
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Dept# Name ID Salary
1 Andersson | 12 2000
Svensson | 13| 4000

Clustering Index

1
, 1
Index Data File 5

* Efficiency gain?

* Maintenance cost?

oslwN|=
/ \
Blw|w N

(R Re [ d) M|

Block 1

Block 2

Block 3
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Secondary Indexes on Key Field

* |[ndex on a non-ordering key field F
- Data file may be sorted or not

* Secondary index: additional sorted file

whose records contain two fields:

V - one of the values of F

ID# SSN Dept. Salary el
P - pointer to a disk block T T 40a5864 12| 2000
of the data file g ORI e - A } Block 1
. Index Data File 4
* One index record .
3452626 | 5 6487539
per data record 4945864 6 | 7299990 L Block 2
5012128 N 7 3452626
6487539 Al 8 9000013 ».
Ly 9 8232333 )
7299990 -
8232333 i T e > Block 3
9000013 "
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Secondary Indexes on Non-Key

* |ndex on a non-ordering non-key field

Option 1 DataFile =
ID# Name Dept. Salary ]
Dense Index 1 Daniels | 12| 2000 = I :
2 | Lancaster [13]| 4000 gk - O ptl on 3 Data File
3 | Andersson E ID# Name
Index Data File 4 | Andersson . - : ; y Daniel
N n
— T : Lgvel of mdwem_:tlon ol o] anieis
Andersson 6 Molin sock2 & With record pointers . 2 Lancaster
Andersson 7 French M \
Danicls 0 Barie: D/r}g 3 Andersson
Iefenr:?: 9 Andersson . Index Data File 4 Andersson
Hagberg 1 Hagberg Block 3 :
Lancaster }; l\Y/IE:I?:r . Andersson |¢] 5 Silver
. Daniels /_D‘F-\ 6 Molin
EEEEE SN EEEEEEEEEEEEEEE NN EEEEEEEEEEENE NN NN ENEEEENENEEEE
Option 2 - French o 7 French
Data File g .
ID# Name Dept. Salary - Ha ber ) 8 Dan|e|s
Repeating field A Daniels | 12| 2000 . gberg
i i 2 15 t 13| 4000 -
with pointers z A:QZ?:;; Block 1 E Lancaster \ : \ 9 Andersson
Index Data File 4 | Andersson . o 10 Hagberg
Andersson 2 i:lc:fl(i: . il Yang
Daniels o - — Block 2 . 12 Miller
French - -
8 Daniels -
Hagberg 7 -
Lancaster 9 Andersson :
10 Hagberg -
1 i Block 3 E
12 Miller :
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Summary of Single-Level Indexes
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Multilevel Indexes
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Multilevel Indexes

* Index on index (first level, second level, etc.)

* Works for primary, clustering, and secondary
Indexes as long as the first-level index ha

a distinct index value for every entry

* How many levels?
- Until the last level fits :
Into a single disk block &

a5

1919219

* How many disk block accesses
to retrieve a random record?
— Number of index levels + 1

-

Second Level

First Level

S

12

15
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52

80
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&5
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63

66
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Multilevel Indexes (cont'd)

* When using a (static) multilevel index, record
Insertion, deletion, and update may be expensive
because all the index levels are sorted files

e Solutions:

- Overflow area + periodic reorganization

- Dynamic multilevel indexes that leave
some space in index blocks for new
entries (e.g., B-trees and B+-trees)
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Dynamic Multilevel Indexes
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Search Trees

* Used to guide the search for a record
— Generalization of binary search

* Nodes of a search tree of order p look like:

P1 Kl ) K;j_l Pi K}_ o0 K FJq

g1
’/X<K1 KF._1<X<KF.\ K, <X
- EAIEE N - FAREE N ‘ " FEARREEY  EARr®
— q < p P K| " | K| B | K| "7 [ K| Py

- Every K, Is a key value

- Every P; is a tree pointer to a subtree (or a null pointer)
- Within each node: K, <K, <... <Kg; ‘

- For every value X in the subtree: K_; < X <K,
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P K, | 0 | K LR K | vt K| R

i g—1

B-Trees

|
X 2K, K,._1<X<KI.\ K

\
h i
2 I T Y R = Y I 9 3 E R N

] - [= o]« ] s fe]

 B-tree is a variant of a balanced search tree
- Balanced: all leaf nodes are at the same
level (Why is this good?)

* Additional constraints:
- In addition to a tree pointer P;, each key value K;

IS associated with a data pointer Pr; to the record
with value K;

- Each internal node must have at least {B} tree
pointers (i.e., is at least half full) 2
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B+-Trees

* Variation of B-trees, most commonly used

* |n contrast to a B-tree, in a B+tree the leaf nodes
are different from the internal nodes; that is:

- Internal nodes have key values and tree
pointers only (no data pointers)

- Leaves have key values and data pointers

- Usually, each leaf node additionally has a
pointer to the next leaf to allow for ordered
access (much like a linked list)

* Every key value is present in one of the leaves
* Of course, B+-trees are balanced
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Internal Nodes of a B+-Tree

Pl K] eoo0 f eo e Kq_l Pq
X <K, K  <X<K

* g<p (where pisthe order of the B+-tree)
 Every K;is a key value, every P; is a tree pointer
* Within each node: K; <K, <... <K,

 For every value X in the subtree: K_; < X < K;

* Every internal node (except the root) has at least
tree pointers

2
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Leaf Nodes of a B+-Tree

K, Pr

Ki

Pr;

Pr,

Pnext

*q

 Every K;is a key value
 Every Pr;is a data pointer to the record with key value K;

* P is a pointer to the next leaf node

* Within each node: K; <K, <... <K,

<p (where pis the order for leaf nodes of the B+-tree)

* Every leaf node has at least

key values
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Retrieval of Records in a B+-Tree

* Very fast retrieval of a random record, at worst: 108[2}1\7 +1
. . 2
— p is the order of the internal nodes
- N Is the number of leaf nodes
* How would
the retrieval ,
o 5 |e 8 |Andersson
proceed? 5 |Hagberg
1 |French
7 |Silver
3 |Daniels
| 12 |Young
9 |Zhing
/° 3 T 7 £ T S [ 6 |Baker
/ ‘ [ \
|| ||
' |
l i |l
10 30/ 50 ®» Go 7 0|le» 8o ®&» 90| 120
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B+-Tree Insertion

Insert: 8

]
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B+-Tree Insertion

Insert: 5
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B+-Tree Insertion

Insert: 1

59| 8 |® I Overflow — create a new level
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B+-Tree Insertion

Insert: 7
II |_|NKOD|NG Database Technology
. UNIVERSITY Topic 8: Data Structures for Databases 44



B+-Tree Insertion

Overflow - Split

Insert: 3
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B+-Tree Insertion

Insert: 12

Overflow - Split
Propagates a new level

LINKOPING
UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

46



B+-Tree Insertion

Insert: 9
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B+-Tree Insertion

1| 5 |
i
_.»’//
/,f”

- J *\ 8

II H'\H '.

v 3! ' \
AN SO | T (NG ] 7'8' e [0 e

Overflow — Split, propagates
Insert: 6
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B+-Tree Insertion

.»-f'/a
,..--"/. -
.-)"-/.
| 3 1
| I\"'\,\
v - z
11° 3 |® > | 5 |e . 2.
Resulting B+-tree
49
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Summary
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Summary

e Storage hierarchy
— Accessing disk is major bottleneck

* Organizing records in files
- Heap files, sorted files, hash files

* |Indexes
— Additional sorted files that provide
efficient secondary access methods

* Primary, secondary, and clustering indexes

* Multilevel indexes
- Retrieval requires reading fewer blocks

* Dynamic multilevel indexes
- Leave some space in index blocks for new entries
- B-tree and B+-tree
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