
Database Technology

Topic 8: Data Structures
 for Databases
Olaf Hartig
olaf.hartig@liu.se

2
Database Technology
Topic 8: Data Structures for Databases

Database System

Storage Hierarchy

4
Database Technology
Topic 8: Data Structures for Databases

Traditional Storage Hierarchy

CPU

• Cache memory
• Main memory

• Disk
• Tape

Primary storage
(fast, small, expensive, volatile,
accessible by CPU)

Secondary storage
(slow, big, cheap, permanent,
inaccessible by CPU)

5
Database Technology
Topic 8: Data Structures for Databases

Magnetic Disk

6
Database Technology
Topic 8: Data Structures for Databases

Properties of Using Magnetic Disks

● Formatting divides the hard-coded
sector into equal-sized blocks
– Block is the unit of data transfer

between disk and main memory
– Typical block sizes: 512 – 8192 bytes

● Read/write from/to disk is a major bottleneck!

– CPU instruction: ca. 1 ns (10–9 secs)
– Main memory access: ca. 10 ns (10–8 secs)
– Disk access: ca. 1 ms (1M ns, 10–3 secs)

R/W time = seek time + rotational delay + block transfer
 (search track) (search block) time

 12–60 ms

Files and Records

8
Database Technology
Topic 8: Data Structures for Databases

Terminology

● Data stored in files
● File is a sequence of records
● Records are allocated to file blocks
● Record is a set of field values
● For instance,

– File = relation
– Record = row
– Field = attribute value

9
Database Technology
Topic 8: Data Structures for Databases

Blocking Factor

● Blocking factor (bfr) is the number of records per block

● Assume
– r is the number of records in a file,
– R is the size of a record, and
– B is the block size in bytes,

then:

● Blocks needed to store the file:

● Space wasted per block = B – bfr * R

bfr=⌊ BR ⌋

b=⌈ r
bfr ⌉

10
Database Technology
Topic 8: Data Structures for Databases

Spanned Records

… avoid wasting space

block i record 1 record 2 wasted

block i record 1 record 2 rec.3 p

block i+1 rec.3 record 4 record 5

block i+1 record 3 record 5 wasted

Unspanned

Spanned

11
Database Technology
Topic 8: Data Structures for Databases

Allocating File Blocks on Disk

● Contiguous allocation: file blocks allocated
 consecutively (one
 after another)
– Fast sequential access, but expanding is difficult

● Linked allocation: each file block contains
 a pointer to the next one
– Expanding the file is easy, but reading is slower

● Linked clusters allocation: hybrid of the two above
– i.e., linked clusters of consecutive blocks

● Indexed allocation: index blocks contain pointers
 to the actual file blocks

File Organization

(Organizing Records in Files)

13
Database Technology
Topic 8: Data Structures for Databases

Heap Files

● Records are added to the end of the file

● Adding a record is cheap

● Retrieving, removing, and updating a record
is expensive because it implies linear search
– Average case: block accesses

– Worst case: b block accesses

(recall, b is the number of blocks of the file)

● Record removal also implies waste of space
– Periodic reorganization

⌈ b2 ⌉

14
Database Technology
Topic 8: Data Structures for Databases

Sorted Files

● Records ordered according to some field

● Ordered record retrieval is cheap (i.e., on
the ordering field, otherwise expensive)
– All the records: access the blocks sequentially
– Next record: probably in the same block
– Random record: binary search; hence,

 block accesses in the worst case

● Adding a record is expensive, but removing
is less expensive (deletion markers and
periodic reorganization)

⌈ log 2b ⌉

15
Database Technology
Topic 8: Data Structures for Databases

Binary Search

16
Database Technology
Topic 8: Data Structures for Databases

Internal Hashing

● Choose a field of the records to be the hash field
● Applying hash function h to the value x of the hash

field returns the position of the record in the file
– e.g., h(x) = x mod r

(recall, r is the number of records in the file)

● Collision: different field values hash to same position

● Solutions to deal with collisions (collision resolution):
– Check subsequent positions until one is empty
– Use a second hash function
– Put the record in an overflow area and link it

17
Database Technology
Topic 8: Data Structures for Databases

External Hashing

● Hashing for disk files
● Applying hash function to the value of the hash field

returns a bucket number (instead of a position)
– Bucket: one or several contiguous disk blocks
– Table converts bucket number into address of block

● Collisions are typically resolved via overflow area

● Cheapest random retrieval
(when searching for equality)

● Ordered record retrieval is expensive

Indexes

(Secondary Access Methods)

19
Database Technology
Topic 8: Data Structures for Databases

Overview

● Seen so far: file organization
– Analogous to organization of books into chapters,

sections, etc.
– Determines primary method to access data in a file

● e.g., sequential search, binary search
● Now: index structures

– Allow for secondary access methods
– Analogous to the index of a book
– Goal: speed up access under specific conditions
– Outline:

1) Single-level ordered indexes (primary,
 secondary, and clustering indexes)

2) Multilevel indexes
3) Dynamic multilevel indexes (B+-trees)

Single-Level Ordered Indexes

21
Database Technology
Topic 8: Data Structures for Databases

Primary Index

● Assumptions:
– Data file is sorted
– Ordering field F is a key

● Primary index: an additional
 sorted file whose records
 contain two fields:

V - one of the values of F
P - pointer to a disk block of the data file

● One index record (V,P) per data block such that
the first data record in the data block pointed to
by P has V as the value of the ordering key F

22
Database Technology
Topic 8: Data Structures for Databases

Primary Index (cont'd)

● Why is it faster to access a random record via a
binary search in the index than in the data file?
– Number of index records << number of data records
– Index records smaller than data records (i.e., higher

blocking factor for the index file than for the data file)

● What is the cost of maintaining a primary index?
(if the order of the data records changes)

23
Database Technology
Topic 8: Data Structures for Databases

Clustering Index

● Assumptions:
– Data file is sorted
– Ordering field F is

not a key (hence,
we cannot assume
distinct values)

● Clustering index: additional sorted file
 whose records contain two fields:

V - one of the values of F
P - pointer to a disk block of the data file

● One index record (V,P) for each distinct value V of
the ordering field F such that P points to the first data
block in which V appears

24
Database Technology
Topic 8: Data Structures for Databases

Clustering Index

● Efficiency gain?
● Maintenance cost?

25
Database Technology
Topic 8: Data Structures for Databases

Secondary Indexes on Key Field

● Index on a non-ordering key field F
– Data file may be sorted or not

● Secondary index: additional sorted file
 whose records contain two fields:

 V - one of the values of F
 P - pointer to a disk block
 of the data file

● One index record
per data record

27
Database Technology
Topic 8: Data Structures for Databases

Secondary Indexes on Non-Key

● Index on a non-ordering non-key field

28
Database Technology
Topic 8: Data Structures for Databases

Summary of Single-Level Indexes

Index field used for
ordering the data file

Index field not used for
ordering the data file

Index field is key Primary index Secondary index (key)

Index field is not key Clustering index Secondary index (non-key)

Type of index Number of
index entries

Primary Number of blocks
in data file

Clustering Number of distinct
index field values

Secondary
(key)

Number of record
in data file

Secondary
(non-key)

Number of records
or number of distinct
index field values

Multilevel Indexes

30
Database Technology
Topic 8: Data Structures for Databases

Multilevel Indexes

● Index on index (first level, second level, etc.)

● Works for primary, clustering, and secondary
indexes as long as the first-level index has
a distinct index value for every entry

● How many levels?
– Until the last level fits

into a single disk block

● How many disk block accesses
to retrieve a random record?
– Number of index levels + 1

33
Database Technology
Topic 8: Data Structures for Databases

Multilevel Indexes (cont'd)

● When using a (static) multilevel index, record
insertion, deletion, and update may be expensive
because all the index levels are sorted files

● Solutions:
– Overflow area + periodic reorganization
– Dynamic multilevel indexes that leave

some space in index blocks for new
entries (e.g., B-trees and B+-trees)

Dynamic Multilevel Indexes

(B-Trees and B+-Trees)

35
Database Technology
Topic 8: Data Structures for Databases

Search Trees

● Used to guide the search for a record
– Generalization of binary search

● Nodes of a search tree of order p look like:

– q ≤ p
– Every Ki is a key value
– Every Pi is a tree pointer to a subtree (or a null pointer)
– Within each node: K1 < K2 < … < Kq–1
– For every value X in the subtree: Ki–1 < X < Ki

36
Database Technology
Topic 8: Data Structures for Databases

B-Trees

● B-tree is a variant of a balanced search tree
– Balanced: all leaf nodes are at the same

 level (Why is this good?)

● Additional constraints:
– In addition to a tree pointer Pi, each key value Ki

is associated with a data pointer Pri to the record
with value Ki

– Each internal node must have at least tree
pointers (i.e., is at least half full)

⌈ p
2 ⌉

37
Database Technology
Topic 8: Data Structures for Databases

B+-Trees

● Variation of B-trees, most commonly used

● In contrast to a B-tree, in a B+tree the leaf nodes
are different from the internal nodes; that is:
– Internal nodes have key values and tree

pointers only (no data pointers)
– Leaves have key values and data pointers
– Usually, each leaf node additionally has a

pointer to the next leaf to allow for ordered
access (much like a linked list)

● Every key value is present in one of the leaves
● Of course, B+-trees are balanced

38
Database Technology
Topic 8: Data Structures for Databases

Internal Nodes of a B+-Tree

● q ≤ p (where p is the order of the B+-tree)
● Every Ki is a key value, every Pi is a tree pointer
● Within each node: K1 < K2 < … < Kq–1
● For every value X in the subtree: Ki–1 < X ≤ Ki
● Every internal node (except the root) has at least

tree pointers
⌈ p
2 ⌉

39
Database Technology
Topic 8: Data Structures for Databases

Leaf Nodes of a B+-Tree

 Prq K1 Pr1 Ki Pri Kq Pnext……

● q ≤ p (where p is the order for leaf nodes of the B+-tree)

● Every Ki is a key value

● Every Pri is a data pointer to the record with key value Ki

● P is a pointer to the next leaf node

● Within each node: K1 < K2 < … < Kq

● Every leaf node has at least key values⌈ p
2 ⌉

40
Database Technology
Topic 8: Data Structures for Databases

Retrieval of Records in a B+-Tree

● Very fast retrieval of a random record, at worst:
– p is the order of the internal nodes
– N is the number of leaf nodes

● How would
the retrieval
proceed?

⌈ log⌈ p2 ⌉
N ⌉+1

41
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

42
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

43
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

44
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

45
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

46
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

47
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

48
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

49
Database Technology
Topic 8: Data Structures for Databases

B+-Tree Insertion

Summary

52
Database Technology
Topic 8: Data Structures for Databases

Summary

● Storage hierarchy
– Accessing disk is major bottleneck

● Organizing records in files
– Heap files, sorted files, hash files

● Indexes
– Additional sorted files that provide

efficient secondary access methods
● Primary, secondary, and clustering indexes
● Multilevel indexes

– Retrieval requires reading fewer blocks
● Dynamic multilevel indexes

– Leave some space in index blocks for new entries
– B-tree and B+-tree

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 51
	Slide 52

