Database Technology

Topic 8: Data Structures
for Databases

Olaf Hartig

olaf.hartig@liu.se

LINKOPING
II." UNIVERSITY

UsarsPrograr Database System

Database l
System

Application Programs/Queries

DEMS Y
Software

Software to Process
Queries/Programs

- .
e’ ¢.~~
Y 4
.

Software to Access I
Stored Data N\

&5

Stored Databa‘ag A
Definition s Stored Database “
(Meta-Data) I N ;
] s & |—] g Figure 1.1
~ e ¢ A simplified database
S s - . 4 system environment,
~

II |_|NKOD|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

Storage Hierarchy

LINKOPING
II.“ UNIVERSITY

Traditional Storage Hierarchy

CPU
I
~
» Cache memory Primary storage
. > (fast, small, expensive, volatile,
* Main memory accessible by CPU)
/
I
~
e Disk Secondary storage
>(s|ow, big, cheap, permanent,
° Tape inaccessible by CPU)
/
II LIN KODI NG Datébase Technology
® UNIVERSITY Topic 8: Data Structures for Databases

Magnetic Disk

track t

<— spindle

«— arm assembly

sector s

e

read-write

; I
cylinder ¢ —>!
I

platter ﬂ
rotation
II LINKOPING Database Technology
[) UNIVERSITY Topic 8: Data Structures for Databases 5

Properties of Using Magnetic Disks

* Formatting divides the hard-coded
sector into equal-sized blocks

- Block is the unit of data transfer

between disk and main memory

- Typical block sizes: 512 — 8192 bytes
* Read/write from/to disk is a major bottleneck!

R/W time = seek time + rotational delay + block transfer

(search track) (search block) time

S— 7
e —
12—60 ms

- CPU instruction: ca. 1 ns (10~ secs)
- Main memory access: ca. 10 ns (107° secs)
- Disk access: ca. 1 ms (1M ns, 10~° secs)

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 6

Files and Records

LINKOPING
II.“ UNIVERSITY

Terminology

* Data stored In files
* File is a sequence of records
* Records are allocated to file blocks
* Record is a set of field values
* For instance, 4
- File = relation
- Record = row
- Field = attribute value

II “ |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 8

Blocking Factor

Blocking factor (bfr) is the number of records per block

* Assume |
— ri1s the number of records In a file, |
— R Is the size of a record, and

— B is the block size in bytes,
then:

bfr:lE

R

b

Blocks needed to store the file: p=

i
bfr

* Space wasted per block = B— bfr * R

II |_|NKOP|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

Spanned Records

... avoid wasting space

[block i
Unspanned | _
block i+1
[block i
Spanned
block i+1

record 1 record 2 wasted
record 3 record 5 wasted
record 1 record 2 rec.3 |p
v

rec.3 record 4 record 5

LINKOPING
II.“ UNIVERSITY

Database Technology

Topic 8: Data Structures for Databases

Allocating File Blocks on Disk

* Contiguous allocation: file blocks allocated
consecutively (one
after another)
- Fast sequential access, but expanding is difficult

Linked allocation: each file block contains
a pointer to the next one
- Expanding the file is easy, but reading is slower

Linked clusters allocation: hybrid of the two above
- l.e., linked clusters of consecutive blocks

Indexed allocation: index blocks contain pointers
to the actual file blocks

II LINKOP|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 1

File Organization

LINKOPING
II.“ UNIVERSITY

Heap Files

* Records are added to the end of the file
* Adding a record is cheap

* Retrieving, removing, and updating a record
IS expensive because it implies linear search

- Average case: |b| block accesses
2

— Worst case: b block accesses
(recall, b is the number of blocks of the file)

* Record removal also implies waste of space
- Periodic reorganization

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 13

Sorted Files

* Records ordered according to some field

* Ordered record retrieval is cheap (i.e., on
the ordering field, otherwise expensive)
— All the records: access the blocks sequentially
— Next record: probably in the same block
- Random record: binary search; hence, |log,b|
block accesses in the worst case

* Adding a record is expensive, but removing
IS less expensive (deletion markers and
periodic reorganization)

II “ LIN KODI NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

14

Binary Search

key 15 11

oW mid hnih
key <350 * [1] ["] [3] [4] [5] I*] [7] [8]) [2][10] [10])[12]
list | 2 10 11 45 SO 59 60 66 69 70 79

low mid hi;rh

[0] [1] [* (3] [4] [5)
key >7 st 34 7 10 11 45

low mud high

LR

II “ LINKOPING Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 15

Internal Hashing

Choose a field of the records to be the hash field

Applying hash function h to the value x of the hash
field returns the position of the record in the file

- e.g., h(x)=xmodr
(recall, r is the number of records In the file)

Collision: different field values hash to same position

Solutions to deal with collisions (collision resolution):
- Check subsequent positions until one is empty

- Use a second hash function

— Put the record in an overflow area and link it

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 16

External Hashing

* Hashing for disk files

* Applying hash function to the value of the hash field
returns a bucket number (instead of a position)
— Bucket: one or several contiguous disk blocks
— Table converts bucket number into address of block

* Collisions are typically resolved via overflow area

* Cheapest random retrieval
(when searching for equality)

* Ordered record retrieval is expensive

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 17

Indexes

LINKOPING
II.“ UNIVERSITY

Overview

* Seen so far: file organization
- Analogous to organization of books into chapters,
sections, etc.
- Determines primary method to access data in a file
* e.g., sequential search, binary search

* Now: index structures
— Allow for secondary access methods
— Analogous to the index of a book
- Goal: speed up access under specific conditions
— Outline:
1) Single-level ordered indexes (primary,
secondary, and clustering indexes)
2) Multilevel indexes
3) Dynamic multilevel indexes (B+-trees)

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 19

Single-Level Ordered Indexes

LINKOPING
II.“ UNIVERSITY

Primary Index

* Assumptions:
- Data file is sorted

Andersson, Anders)

“

Andersson, Sven)

/_’—’/]'

Nilsson, Johan)

(
(
(Davidsson, Nils)
(
(

Svensson, Karl)

— Ordering field F is a key

* Primary index: an additional
sorted file whose records

contain two fields:

V - one of the values of F
P - pointer to a disk block of the data file

* One index record (V,P) per data block such that
the first data record in the data block pointed to
by P has V as the value of the ordering key F

N\

(Andersson, Anders)

(Andersson, Nils)

(Andersson, Sven)

(Bengtsson, Anders)

(Davidsson, Nils)

(Larsson, Anders)

(Nilsson, Johan)

(Petersson, Jérgen)

Y

"

N

v

LINKOPING
II.“ UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

21

Block 1

Block 2

Block 3

Block 4

(Andersson, Anders)

Primary Index (cont'd) Bock

(Andersson, Nils)

(Andersson, Sven)
/' > Block 2
Andersson, Anders) (Bengtsson, Anders))

Andersson, Sven) |] :

_—Y|(Davidsson, Nils)

Nilsson, Johan) ~

Svensson, Karl) \(Larsson, Anders) <
(Nilsson, Johan)
> Block 4
(Petersson, Jorgen) |

* Why is it faster to access a random record via a
binary search in the index than in the data file?
— Number of index records << number of data records
- Index records smaller than data records (i.e., higher
blocking factor for the index file than for the data file)

(
(
(Davidsson, Nils) =
(
(

* What is the cost of maintaining a primary index?
(if the order of the data records changes)

II “ |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 22

> Block 3

Clustering Index

Index Data File

* Assumptions:
- Data file is sorted
— Ordering field F is
not a key (hence,
we cannot assume
distinct values)

Dept#

Name

D

Salary

1

Andersson

12

2000

Svensson

13

4000

(W (M N | ==

| (W=

7

(R Re [d) M|

* Clustering index: additional sorted file

whose records contain two fields:
V - one of the values of F
P - pointer to a disk block of the data file

* One index record (V,P) for each distinct value V of

the ordering field F such that P points to the first data

block in which V appears

} Block 1
} Block 2

} Block 3

Database Technology

II LINKOPING
[) UNIVERSITY

Topic 8: Data Structures for Databases

23

Dept# Name ID Salary
1 Andersson | 12 2000
Svensson | 13| 4000

Clustering Index

1
, 1
Index Data File 5

* Efficiency gain?

* Maintenance cost?

oslwN|=
/ \
Blw|w N

(R Re [d) M|

Block 1

Block 2

Block 3

II LINKOP|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

24

Secondary Indexes on Key Field

* |[ndex on a non-ordering key field F
- Data file may be sorted or not

* Secondary index: additional sorted file

whose records contain two fields:

V - one of the values of F

ID# SSN Dept. Salary el
P - pointer to a disk block T T 40a5864 12| 2000
of the data file g ORI e - A } Block 1
. Index Data File 4
* One index record .
3452626 | 5 6487539
per data record 4945864 6 | 7299990 L Block 2
5012128 N 7 3452626
6487539 Al 8 9000013 ».
Ly 9 8232333)
7299990 -
8232333 i T e > Block 3
9000013 "

II “ LIN KOPI NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

25

Secondary Indexes on Non-Key

* |ndex on a non-ordering non-key field

Option 1 DataFile =
ID# Name Dept. Salary]
Dense Index 1 Daniels | 12| 2000 = I :
2 | Lancaster [13]| 4000 gk - O ptl on 3 Data File
3 | Andersson E ID# Name
Index Data File 4 | Andersson . - : ; y Daniel
N n
— T : Lgvel of mdwem_:tlon ol o] anieis
Andersson 6 Molin sock2 & With record pointers . 2 Lancaster
Andersson 7 French M \
Danicls 0 Barie: D/r}g 3 Andersson
Iefenr:?: 9 Andersson . Index Data File 4 Andersson
Hagberg 1 Hagberg Block 3 :
Lancaster }; l\Y/IE:I?:r . Andersson |¢] 5 Silver
. Daniels /_D‘F-\ 6 Molin
EEEEE SN EEEEEEEEEEEEEEE NN EEEEEEEEEEENE NN NN ENEEEENENEEEE
Option 2 - French o 7 French
Data File g .
ID# Name Dept. Salary - Ha ber) 8 Dan|e|s
Repeating field A Daniels | 12| 2000 . gberg
i i 2 15 t 13| 4000 -
with pointers z A:QZ?:;; Block 1 E Lancaster \ : \ 9 Andersson
Index Data File 4 | Andersson . o 10 Hagberg
Andersson 2 i:lc:fl(i: . il Yang
Daniels o - — Block 2 . 12 Miller
French - -
8 Daniels -
Hagberg 7 -
Lancaster 9 Andersson :
10 Hagberg -
1 i Block 3 E
12 Miller :
II |_|NKOD|NG Database Technology
. UNIVERSITY Topic 8: Data Structures for Databases 27

Summary of Single-Level Indexes

II LINKOPING Database Technology
[) UNIVERSITY Topic 8: Data Structures for Databases

28

Multilevel Indexes

LINKOPING
II.“ UNIVERSITY

Multilevel Indexes

* Index on index (first level, second level, etc.)

* Works for primary, clustering, and secondary
Indexes as long as the first-level index ha

a distinct index value for every entry

* How many levels?
- Until the last level fits :
Into a single disk block &

a5

1919219

* How many disk block accesses
to retrieve a random record?
— Number of index levels + 1

-

Second Level

First Level

S

12

15

2>

8

24

15

24

Vit

35

35

36

39

39

44

a1

44

55

46

63

71

52

80

Lo

Ll elglplellelglplel|R]|c[q]Q

&5

58

63

66

NN

Database Technology
Topic 8: Data Structures for Databases

LINKOPING
II.“ UNIVERSITY

30

9|4 ejeQq

Multilevel Indexes (cont'd)

* When using a (static) multilevel index, record
Insertion, deletion, and update may be expensive
because all the index levels are sorted files

e Solutions:

- Overflow area + periodic reorganization

- Dynamic multilevel indexes that leave
some space in index blocks for new
entries (e.g., B-trees and B+-trees)

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 33

Dynamic Multilevel Indexes

LINKOPING
II.“ UNIVERSITY

Search Trees

* Used to guide the search for a record
— Generalization of binary search

* Nodes of a search tree of order p look like:

P1 Kl) K;j_l Pi K}_ o0 K FJq

g1
’/X<K1 KF._1<X<KF.\ K, <X
- EAIEE N - FAREE N ‘ " FEARREEY EARr®
— q < p P K| " | K| B | K| "7 [K| Py

- Every K, Is a key value

- Every P; is a tree pointer to a subtree (or a null pointer)
- Within each node: K, <K, <... <Kg; ‘

- For every value X in the subtree: K_; < X <K,

II “ |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 35

P K, | 0 | K LR K | vt K| R

i g—1

B-Trees

|
X 2K, K,._1<X<KI.\ K

\
h i
2 I T Y R = Y I 9 3 E R N

] - [= o]«] s fe]

 B-tree is a variant of a balanced search tree
- Balanced: all leaf nodes are at the same
level (Why is this good?)

* Additional constraints:
- In addition to a tree pointer P;, each key value K;

IS associated with a data pointer Pr; to the record
with value K;

- Each internal node must have at least {B} tree
pointers (i.e., is at least half full) 2

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 36

B+-Trees

* Variation of B-trees, most commonly used

* |n contrast to a B-tree, in a B+tree the leaf nodes
are different from the internal nodes; that is:

- Internal nodes have key values and tree
pointers only (no data pointers)

- Leaves have key values and data pointers

- Usually, each leaf node additionally has a
pointer to the next leaf to allow for ordered
access (much like a linked list)

* Every key value is present in one of the leaves
* Of course, B+-trees are balanced

II |_|NKOD|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

37

Internal Nodes of a B+-Tree

Pl K] eoo0 f eo e Kq_l Pq
X <K, K <X<K

* g<p (where pisthe order of the B+-tree)
 Every K;is a key value, every P; is a tree pointer
* Within each node: K; <K, <... <K,

 For every value X in the subtree: K_; < X < K;

* Every internal node (except the root) has at least
tree pointers

2

II |_|NKOD|NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 38

Leaf Nodes of a B+-Tree

K, Pr

Ki

Pr;

Pr,

Pnext

*q

 Every K;is a key value
 Every Pr;is a data pointer to the record with key value K;

* P is a pointer to the next leaf node

* Within each node: K; <K, <... <K,

<p (where pis the order for leaf nodes of the B+-tree)

* Every leaf node has at least

key values

LINKOPING
UNIVERSITY

Database Technology

Topic 8: Data Structures for Databases

39

Retrieval of Records in a B+-Tree

* Very fast retrieval of a random record, at worst: 108[2}1\7 +1
. . 2
— p is the order of the internal nodes
- N Is the number of leaf nodes
* How would
the retrieval ,
o 5 |e 8 |Andersson
proceed? 5 |Hagberg
1 |French
7 |Silver
3 |Daniels
| 12 |Young
9 |Zhing
/° 3 T 7 £ T S [6 |Baker
/ ‘ [\
|| ||
' |
l i |l
10 30/ 50 ®» Go 7 0|le» 8o ®&» 90| 120

II “ LIN KOPI NG Database Technology
() UNIVERSITY Topic 8: Data Structures for Databases 40

B+-Tree Insertion

Insert: 8

]

LINKOPING
UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

41

B+-Tree Insertion

Insert: 5

LINKOPING
UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

42

B+-Tree Insertion

Insert: 1

59| 8 |® I Overflow — create a new level

LINKOPING
UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

43

B+-Tree Insertion

Insert: 7
II |_|NKOD|NG Database Technology
. UNIVERSITY Topic 8: Data Structures for Databases 44

B+-Tree Insertion

Overflow - Split

Insert: 3

II LINKOPING
[) UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

45

B+-Tree Insertion

Insert: 12

Overflow - Split
Propagates a new level

LINKOPING
UNIVERSITY

Database Technology
Topic 8: Data Structures for Databases

46

B+-Tree Insertion

Insert: 9

47

Database Technology
Topic 8: Data Structures for Databases

II LINKOPING
[) UNIVERSITY

B+-Tree Insertion

1| 5 |
i
_.»’//
/,f”

- J *\ 8

II H'\H '.

v 3! ' \
AN SO | T (NG] 7'8' e [0 e

Overflow — Split, propagates
Insert: 6

Database Technology
Topic 8: Data Structures for Databases

II LINKOPING
[) UNIVERSITY

B+-Tree Insertion

.»-f'/a
,..--"/. -
.-)"-/.
| 3 1
| I\"'\,\
v - z
11° 3 |® > | 5 |e . 2.
Resulting B+-tree
49

Database Technology

II LINKOPING
® UNIVERSITY Topic 8: Data Structures for Databases

Summary

LINKOPING
II.“ UNIVERSITY

Summary

e Storage hierarchy
— Accessing disk is major bottleneck

* Organizing records in files
- Heap files, sorted files, hash files

* |Indexes
— Additional sorted files that provide
efficient secondary access methods

* Primary, secondary, and clustering indexes

* Multilevel indexes
- Retrieval requires reading fewer blocks

* Dynamic multilevel indexes
- Leave some space in index blocks for new entries
- B-tree and B+-tree

II |_|NKOD|NG Database Technology
® UNIVERSITY Topic 8: Data Structures for Databases

52

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 51
	Slide 52

