Database Technology

Topic 6: Functional Dependencies and Normalization

Olaf Hartig olaf.hartig@liu.se

Motivation

- How can we be sure that the translation of an EER diagram into a relational schema results in a good database design?
- Given a deployed database, how can we be sure that it is well-designed?
- What is a good database design?
 - Informal measures
 - Formal measure: normal forms
 - Definition based on functional dependencies

Informal Measures

Example of Bad Design

	DT	
	D I	

Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn

- Every tuple contains employee data and department data
- Redundancy
 - Dname and Dmgr_ssn repeated for every employee in a department
- Potential for too many NULL values
 - Employees not in any department need to pad tuples with NULLs
- Update anomalies
 - Deleting the last employee in a department will result in deleting the department
 - Changing the department name or manager requires many tuples to be updated
 - Inserting employees requires checking for consistency of its department name and manager

Informal Measures

- Easy-to-explain meaning for each relation schema
 - Each relation schema should be about only one type of entities or relationships
 - Natural result of good ER design
- Minimal redundant information in tuples
 - Avoids update anomalies
 - Avoids wasted space
- Minimal number of NULL values in tuples
 - Avoids inefficient use of space
 - Avoids costly outer joins or other special treatment in queries
 - Avoids ambiguous interpretation (e.g., unknown vs. does not apply)

Quiz

 Consider the following relation schema for recording information about persons and the countries they visited

R(PID, PersonName, Country, Continent, ContinentArea, NumberVisitsCountry)

- This relation schema ...
- A. ... is an example of good design
- B. ... does not allow for a person to have visited different countries a different number of times
- C. ... uses exactly one tuple to record a persons's name
- D. ... cannot be used in a straightforward manner to record the continent of a country that has not been visited by any persons so far

Foundations of Formal Measures

Functional Dependencies (FDs) – Idea

Consider the example relation schema from our quiz

R(PID, PersonName, Country, Continent, ContinentArea, NumberVisitsCountry)

- Assume that no two persons have the same PID
- Thus, given a PID, there is only one possible value for PersonName
 - PID → PersonName
- Similarly, if we assume that every country is in only one continent, then, given a value for Country, there is only one possible value for Continent
 - Country \rightarrow Continent

Preliminary Definition

Let *R* be a relational schema with the attributes $A_1, A_2, ..., A_n$, let *X* be a subset of $\{A_1, A_2, ..., A_n\}$, and let *t* be a tuple for *R*. Then, we write *t*[*X*] to denote the sequence of values that *t* has for the attributes in set *X*.

Actor

- Example:
 - Let X = {name, cityOfBirth}
 and let t be the first tuple in the example table,

then, *t*[*X*] is the tuple ('Ben Afflect', 'Berkley')

Let Y = {name,countryOfBirth},
 then, t[Y] is the tuple
 ('Ben Afflect', 'USA')

name	cityOfBirth	countryOfBirth
Ben Affleck	Berkeley	USA
Alan Arkin	New York	USA
Tommy Lee Jones	San Saba	USA
John Wells	Alexandria	USA
Steven Spielberg	Cincinnati	USA
Daniel Day-Lewis	Greenwich	UK

Functional Dependencies (FDs) – Definition

Constraint between two sets of attributes from a relation

Let *R* be a relational schema with the attributes $A_1, A_2, ..., A_n$ and let *X* and *Y* be subsets of $\{A_1, A_2, ..., A_n\}$. Then, the functional dependency $X \rightarrow Y$ specifies the following constraint on *any* valid relation state *r* of *R*. For *any* two tuples t_1 and t_2 in state *r* we have that: if $t_1[X] = t_2[X]$, then $t_1[Y] = t_2[Y]$.

- We say "X determines Y" or "Y depends on X"

Trivial Functional Dependencies

- Some dependencies must always hold
- Examples:
 - $\{\mathsf{PID}\} \rightarrow \{\mathsf{PID}\}$
 - {PID, Country} \rightarrow {PID}
 - {PID, Country} → {Country}

- Formally:
 - Let *R* be a relation schema, and
 - let *X* and *Y* be subsets of attributes in *R*.
 - If Y is a subset of X, then $X \rightarrow Y$ holds trivially, and
 - we say that $X \rightarrow Y$ is a trivial functional dependency

Identifying Functional Dependencies

- Property of the semantics (the meaning) of the attributes
- Recognized and recorded as part of database design
- Given an arbitrary relation state,
 - we cannot determine which FDs hold
 - we can observe that an FD does not hold if there are tuples that violate the FD

Running Example

Consider the following relation schema

R(PID, PersonName, Country, Continent, ContinentArea, NumberVisitsCountry)

Functional dependencies?

 $\{ \mathsf{PID} \} \rightarrow \{ \mathsf{PersonName} \}$

 $\{ PID, Country \} \rightarrow \{ NumberVisitsCountry \}$

 $\{ Country \} \rightarrow \{ Continent \}$

 $\{ Continent \} \rightarrow \{ ContinentArea \}$

Implication and Closure

- Let *R* be a relational schema and let *F* be a set of FDs for *R*
- **Definition:** *F* is said to logically imply an FD $X \rightarrow Y$ if this FD holds in *all instances* of *R* that satisfy all FDs in *F*
 - Example: F = { FD3, FD4 } with FD3: Country → Continent
 and FD4: Continent → ContinentArea

Then, *F* logically implies FD5: Country \rightarrow ContinentArea

- Definition: The closure of F, denoted by F⁺, is the set of all FDs that are logically implied by F
- Clearly, F is a subset of F⁺. However, what else is in F⁺?

Reasoning About FDs

- Logical implications can be derived by using inference rules called Armstrong's rules:
 - Reflexivity: If Y is a subset of X, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$

(we use *XY* as a short form for *X* U *Y*)

- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- These three rules are sound
 - i.e., given a set F of FDs, any FD that can be derived by applying these rules repeatedly is in F⁺
- These three rules are complete
 - i.e., given a set F of FDs, by applying these rules repeatedly, we will eventually find every FD that is in F⁺

Reasoning About FDs (cont'd)

- Logical implications can be derived by using inference rules called Armstrong's rules:
 - *Reflexivity:* If Y is a subset of X, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$

(we use *XY* as a short form for *X* U *Y*)

- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Additional rules can be derived:
 - Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Pseudo-transitivity: If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

 Recall R(PID, PersonName, Country, Continent, ContinentArea, NumberVisitsCountry) with:
 FD1: PID → PersonName
 FD2: PID, Country → NumberVisitsCountry
 FD3: Country → Continent
 FD4: Continent → ContinentArea

Show that we also have FD': PID,Country → NumberVisitsCountry, Continent, ContinentArea, PersonName

- *FD5:* Country \rightarrow ContinentArea (transitive rule with FD3 and FD4)
- FD6: Country \rightarrow Continent, ContinentArea (union rule with FD3 and FD5)
- FD7: PID, Country → PID, Continent, ContinentArea (augmentation of FD6)
- *FD8:* PID, Country → Continent, ContinentArea (decomposition of FD7)
- *FD9:* PID, Country → PersonName (augmentation + decomposition FD1)
- Finally, *FD*' by union rule with FD2, FD8, and FD9

Revisiting Keys

- Given a relation schema R with attributes A₁, A₂, ..., A_n
 X a subset of these attributes, and F is a set of FDs for R
- X is a **superkey** of R if $X \rightarrow \{A_1, A_2, ..., A_n\}$ is in F⁺
 - Often written as $X \rightarrow R$
- Given a set *F* of FDs, how can we easily test whether $X \rightarrow R$ is in *F*+?

Let *F* be a set of FDs over the attributes of a relation *R* and let *X* be a subsets of these attributes. The **attribute closure** of *X* w.r.t. *F* is the maximum set of attributes functionally determined by *X*.

- If the attribute closure of X contains all attributes, we have $X \rightarrow R$
- The attribute closure can be computed in polynomial time ...

Computing (Super)Keys

```
function ComputeAttrClosure(X, F)
begin
    X^+ := X:
    while F contains an FD Y \rightarrow Z such that
            (i) Y is a subset of X^+, and
            (ii) Z is not a subset of X^+ do
         X^+ := X^+ \cup Z:
     end while
    return X<sup>+</sup>;
end
                     Example: Recall R(PID, PersonName, Country, Continent,
                                           ContinentArea, NumberVisitsCountry) with:
                      FD1: PID \rightarrow PersonName
                      FD2: PID, Country \rightarrow NumberVisitsCountry
                      FD3: Country \rightarrow Continent
                      FD4: Continent \rightarrow ContinentArea
```

 The attribute closure of X = { PID, Country } w.r.t. FD1–FD4 is { PID, Country, PersonName, NumberVisitsCountry, Continent, ContinentArea }

Revisiting Keys (cont'd)

- Given a relation schema R with attributes A₁, A₂, ..., A_n
 X a subset of these attributes, and F is a set of FDs for R
- X is a **superkey** of R if $X \rightarrow \{A_1, A_2, \dots, A_n\}$ is in F⁺
 - Often written as $X \rightarrow R$
 - Can be tested easily by computing the attribute closure of *X*
- However, not every superkey is a candidate key
- To determine that X is a candidate key of R, we also need to show that no proper subset of X determines R
 - i.e., there does not exist a Y such that $Y \subsetneq X$ and $Y \rightarrow R$
- Hence, identifying *all* candidate keys is a matter of testing increasingly smaller subsets of { A₁, A₂, ..., A_n }

Normal Forms

Overview

- (1NF, 2NF,) 3NF, BCNF (4NF, 5NF)
 - BCNF: Boyce-Codd Normal Form
- Relation in higher normal form also satisfies the conditions of every lower normal form
- The higher the normal form, the less the redundancy
- 3NF and BCNF are our formal measure of good database design
 - Reduce redundancy
 - Reduce update anomalies
- Normalization: process of turning a set of relations that are in lower normal forms into relations that are in higher normal forms
 - by successively decomposing lower normal form relations

Boyce-Codd Normal Form (BCNF)

- Relation schema R with a set F of functional dependencies is in BCNF if for every non-trivial FD X → Y in F⁺ we have that X is a superkey
 - Note that it is sufficient to check the FDs in F
- Example relation that is not in BCNF:

<u>ID</u>	Name	Zip	City
100	Andersson	58214	Linköping
101	Björk	10223	Stockholm
102	Carlsson	58214	Linköping

FD2: ID \rightarrow { Name, Zip, City }

- Why do we want to avoid FDs whose left-hand-side is not a superkey?
 - Set of attributes that is not a superkey can have repeated values
 - So may have the attributes that depend on it
 - Hence, redundancy and, thus, waste of space and update anomalies

Quiz (Running Example)

Relation schema R with a set F of functional dependencies is in BCNF if for every non-trivial FD X → Y in F⁺ we have that X is a superkey

- Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:
 ED1: PID → PersonName
 - *FD2:* PID, Country \rightarrow NumberVisitsCountry
 - *FD3:* Country → Continent
 - FD4: Continent \rightarrow ContinentArea
- Is R in BCNF?

- Yes / No
- What can we do about it? \blacktriangleright Decompose *R*

Desirable Properties of Decompositions

Attribute Preservation

- Of course, keep all the attributes from the initial schema !
- Formally:
 - Suppose $\operatorname{attr}(R)$ denotes the set of attributes in a relation schema R
 - Then, given a relation schema R, a set of relation schemas R_1, \ldots, R_n is an attribute-preserving decomposition of R if

 $\operatorname{attr}(R) = \bigcup_{i=1...n} \operatorname{attr}(R_i)$

Dependency Preservation

- Idea: every FD of the initial schema can be recovered based on the FDs of the schemas in the decomposition
- Example: Consider R(<u>Proj</u>, Dept, Div) with FD1: Proj → Dept FD2: Dept → Div FD3: Proj → Div
 - *R* is not in BCNF (why?)
 - Two alternative decompositions into BCNF relations:

D1: R1(Proj, Dept) with FD1 and R2(Dept, Div) with FD2 D2: R1(Proj, Dept) with FD1 and R3(Proj, Div) with FD3

- D2 does not preserve FD2!
- *D1* preserves *FD3* because in *D1*, *FD3* can be reconstructed by applying the transitivity rule to *FD1* and *FD2*

Dependency Preservation (formally)

- Let R be a relation schema with a set F of FDs
- Let $R_1, R_2, ..., R_n$ be a decomposition of R
- For every R_i we call the set of all FDs in F⁺ that mention only attributes from R_i the restriction of F to R_i
- Then, the decomposition is dependency preserving if for the restrictions F₁, F₂, ..., F_n of F to R₁, R₂, ..., R_n it holds that

 $(F_1 \cup F_2 \cup \dots \cup F_n)^+ = F^+$

Non-Additive Join Property

- Also called lossless join property
- It must be possible that if we join the relations R₁, ..., R_n, then we recover the initial relation R without generating additional tuples (also called "spurious tuples")
- Example for a decomposition that does not have the property
 - Consider R(Student, Assignment, Mark)
 - Decomposition into R1(Student, Mark) and R2(Assignment, Mark)
 - There are instances of *R* for which joining their decomposed *R1* and *R2* (by *R1*.Mark=*R2*.Mark) result in another instance of *R* containing additional ("spurious") tuples that were not in the initial instance of *R*

Student	Assignment	Mark
Alice	Al	100
Bob	Al	80
Bob	A2	100

BCNF Decomposition Algorithm

Decomposition Step

- Let $X \rightarrow Y$ be the FD that violates BCNF in a relation schema R
- Replace R by two new relation schemas R1 and R2 constructed as follows
- Create R1 with all the attributes in X and in Y
- Create *R2* from *R* by removing all attributes that are in *Y* and not in *X*
- Example: recall the example relation that was not in BCNF

<u>ID</u>	Name	Zip	City
100	Andersson	58214	Linköping
101	Björk	10223	Stockholm
102	Carlsson	58214	Linköping

FD1: Zip → City

ID

100

101

102

FD2: ID \rightarrow { Name, Zip, City }

	<u>Zip</u>	City
	58214	Linköping
Decompose	10223	Stockholm
with FD1		

with FD3: $ID \rightarrow \{Name, ZIP\}$

Name

Andersson

Björk

Carlsson

Note that R1 or R2 may still not be in BCNF

Zip 58214

10223

58214

Algorithm

```
function DecomposeBCNF(R, F)

begin

Result := R;

while there is a relation schema R_i in Result for which

the restriction of F^+ to R_i contains a non-trivial

FD X \rightarrow Y that violates the BCNF condition

do

Decompose R_i into R_i1 and R_i2 as on the previous slide;

Replace R_i in Result by R_i1 and R_i2;
```

end while

return *Result*; end

- Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:
 FD1: PID → PersonName
 FD2: PID, Country → NumberVisitsCountry
 FD3: Country → Continent
 FD4: Continent → ContinentArea
- *R* is not in BCNF (*FD1*, *FD3*, and *FD4* violate the BCNF condition)
- By using *FD1*, we decompose *R* into
 - R1(<u>PID</u>, PersonName) with FD1, and
 - R2(<u>PID</u>, <u>Country</u>, Continent, ContinentArea, NumberVisitsCountry) with FD2, FD3, and FD4 (and others)
- Now, R1 is in BCNF, but R2 is not because of FD3 and FD4 (and others)
 - Hence, we need to decompose R2 further ...

- Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:
 FD1: PID → PersonName
 FD2: PID, Country → NumberVisitsCountry
 FD3: Country → Continent
 FD4: Continent → ContinentArea
- Given R2(<u>PID</u>, <u>Country</u>, Continent, ContinentArea, NumberVisitsCountry) with FD2, FD3, and FD4 (and others)
- We may decompose R2 by using FD3, in which case we would end up with a BCNF decomposition of R that is not dependency preserving

- Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:
 FD1: PID → PersonName
 FD2: PID, Country → NumberVisitsCountry
 FD3: Country → Continent
 FD4: Continent → ContinentArea
- Given R2(<u>PID</u>, <u>Country</u>, Continent, ContinentArea, NumberVisitsCountry) with FD2, FD3, and FD4 (and others)
- Let's use *FD4* instead, which gives us
 - R2X(Continent, ContinentArea) with FD4, and
 - R2Y(<u>PID</u>, <u>Country</u>, Continent, NumberVisitsCountry)

with FD2 and FD3 (and others)

• *R2X* is in BCNF, but *R2Y* still is not because of *FD3*

 Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:
 FD1: PID → PersonName
 FD2: PID, Country → NumberVisitsCountry
 FD3: Country → Continent
 FD4: Continent → ContinentArea

- Given R2Y(<u>PID</u>, <u>Country</u>, Continent, NumberVisitsCountry) with FD2 and FD3 (and others)
- Since *FD3* violates BCNF for *R2Y* we use it to decompose *R2Y* into
 - R2YA(Country, Continent) with FD3, and
 - R2YB(PID, Country, NumberVisitsCountry) with FD2
- Finally, *R2YA* and *R2YB* are also in BCNF
- Hence, the result of decomposing R consists of R1, R2X, R2YA, and R2YB

Properties of the Algorithm

- Results depend on the FDs chosen for the decomposition steps
- Any resulting decomposition has the non-additive join property (lossless)
- Finding a dependency-preserving decomposition is not guaranteed,
 - even if one exists and may be found by choosing other (BCNF-violating) FDs for the decomposition steps

- For some cases, there does not exist any decomposition into BCNF relations that is lossless and dependency preserving
 - Example: R(A, B, C) with $FD1: AB \rightarrow C$ and $FD2: C \rightarrow B$
 - For 3NF, there always exists a decomposition that is lossless and dependency preserving (but our algorithm is not guaranteed to find it)

www.liu.se

