Database Technology Topic 6: Functional Dependencies and Normalization Olaf Hartig olaf.hartig@liu.se	 Motivation How can we be sure that the translation of an EER diagram into a relational schema results in a good database design? Given a deployed database, how can we be sure that it is well-designed? What is a good database design? Informal measures Formal measure: normal forms Definition based on functional dependencies
	UNIVERSITY Database Technology Topic 6- Functional Dependencies and Normalization 2
Informal Measures	Example of Bad Design EMP_DEPT Ename Son Badate Address Dumber Dname Optimized Badate Address Dname Optimized Badate Optimized Badate Optimized Badate Optimized Description Optimized Badate Optimized <
	UNIXCPING Database Technology Topic 6: Functional Dependencies and Normalization 4
 Informal Measures Easy-to-explain meaning for each relation schema Each relation schema should be about only one type of entities or relationships Natural result of good ER design Minimal redundant information in tuples Avoids update anomalies Avoids wasted space Minimal number of NULL values in tuples Avoids inefficient use of space Avoids costly outer joins or other special treatment in queries Avoids ambiguous interpretation (e.g., unknown vs. does not apply) 	 Quiz Consider the following relation schema for recording information about persons and the countries they visited R(PID, PersonName, Country, Continent, ContinentArea, NumberVisitsCountry) This relation schema A is an example of good design B does not allow for a person to have visited different countries a different number of times C uses exactly one tuple to record a persons's name D cannot be used in a straightforward manner to record the continent of a country that has not been visited by any persons so far
Dutabase Technology Dutabase Technology Topic 6: Functional Dependencies and Normalization 5	Database Technology Database Technology Topic 6: Functional Dependencies and Normalization 6

Foundations of Formal Measures		 Functional Dependencies (FDs) – Idea Consider the example relation schema from our quiz R(PID, PersonName, Country, Continent, ContinentArea, NumberVisitsCountry) Assume that no two persons have the same PID Thus, given a PID, there is only one possible value for PersonName PID → PersonName Similarly, if we assume that every country is in only one continent, then, given a value for Country, there is only one possible value for Continent Country → Continent
		Database Technology UNVERSITY Topic 6: Functional Dependencies and Normalization 8
<section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	rrin <mark>countryOfBirth</mark> ey USA rrik USA ba USA tria USA ati USA ati USA ati USA	<text><text><text><text><text><equation-block><text><text><text></text></text></text></equation-block></text></text></text></text></text>
Trivial Functional Dependencies• Some dependencies must always hold• Examples: • {PID} \rightarrow {PID} • {PID, Country} \rightarrow {PID} • {PID, Country} \rightarrow {PID} • {PID, Country} \rightarrow {Country}• Formally: • Let <i>R</i> be a relation schema, and • let <i>X</i> and <i>Y</i> be subsets of attributes in <i>R</i> .• If <i>Y</i> is a subset of <i>X</i> , then $X \rightarrow Y$ holds trivially, and • we say that $X \rightarrow Y$ is a <i>trivial functional dependency</i>		 Identifying Functional Dependencies Property of the semantics (the meaning) of the attributes Recognized and recorded as part of database design Given an arbitrary relation state, we cannot determine which FDs hold we can observe that an FD does not hold if there are tuples that violate the FD
LINKOPING Database Technology UNIVERSITY Date & Energing Decembergies and Normalization	11	LINKÖPING Database Technology UNIVERSITY Topic 6. Functional Dependencies and Normalization 12

Computing (Super)Keys	Revisiting Keys (cont'd)
function ComputeAttrClosure(X, F)	• Given a relation schema <i>R</i> with attributes $A_1, A_2,, A_n$
begin X ⁺ := X;	X a subset of these attributes, and F is a set of FDs for R
while F contains an FD $Y \rightarrow Z$ such that	• A is a superney of $R \parallel A \rightarrow \{A_1, A_2,, A_n\}$ is if F'
(i) Y is a subset of X^+ , and (ii) Z is not a subset of X^+ do	 Can be tested easily by computing the attribute closure of X
$X^+ := X^+ \cup Z;$	
end while return X ⁺ :	 However, not every superkey is a candidate key
end • Example: Recall <i>R</i> (PID, PersonName, Country, Continent,	To determine that X is a candidate key of R, we also need to show that no proper subset of X determines R
ContinentArea, NumberVisitsCountry) with:	• i.e. there does not exist a V such that V C V and V > P
FD2: PID, Country \rightarrow NumberVisitsCountry	$1.2., \text{ there does not exist a 7 such that } f \neq X \text{ and } f \neq X$
FD3: Country → Continent	 Hence, identifying all candidate keys is a matter of
The attribute elegates of $X = \{ \text{Dip}, \text{Country} \}$ wet ED1 ED4 is (Dip	testing increasingly smaller subsets of { $A_1, A_2,, A_n$ }
Country, PersonName, NumberVisitsCountry, Continent, ContinentArea }	
LINKOPING Database Technology UNIVEDDTV Table 5: Exercises Queenderside and Nerrestitution 19	Picture source: https://pixabay.com/en/key-keychain-house-keys-door-key-2744636/
UNVERSITY optics. Functional dependences and nonnalization 25	UNIVERSITY upped - runkuonia beperidenkes and noninaization 20
	Overview
	 (1NF, 2NF,) 3NF, BCNF (4NF, 5NF)
	- BCNF: Boyce-Codd Normal Form
	Relation in higher normal form also satisfies
	the conditions of every lower normal form
Normal Forms	The higher the normal form, the less the redundancy
	2NE and DONE are our formal managing of good database design
	 SNF and BCNF are our formal measure of good database design Reduce redundancy
	 Reduce update anomalies
	 Normalization: process of turning a set of relations that are in
	lower normal forms into relations that are in higher normal forms
	 by successively decomposing lower normal form relations
	LINKOPING Database Technology UNIVERSITY Topic 6: Functional Dependencies and Normalization 22
Pouse Codd Normal Form (PCNE)	Quiz (Bunning Example)
 Relation schema R with a set F of functional dependencies is in BCNF 	 Relation schema R with a set F of functional dependencies is in BCNF
if for every non-trivial FD $X \rightarrow Y$ in F^+ we have that X is a superkey	if for every non-trivial $FD X \rightarrow Y$ in F^+ we have that X is a superkey
 Note that it is sufficient to check the FDs in F 	
Example relation that is not in BCNF:	
<u>JD</u> Name Zip City 100 Anderson 5211 Linköping	 Recall R(<u>PID, Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:
JD Name Zip City FD1: Zip → City 100 Andersson 58214 Linköping 101 Björk 10223 Stockholm	 Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with: <i>FD1</i>: PID → PersonName
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	 Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with: FD1: PID → PersonName FD2: PID, Country → NumberVisitsCountry
JD Name Zip City 100 Andersson 58214 Linköping 101 Björk 10223 Stockholm 102 Carlsson 58214 Linköping FD1: Zip → City FD2: ID → { Name, Zip, City } Why do we want to avoid FDs whose left-hand-side is not a superkey?	 Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with: FD1: PID → PersonName FD2: PID, Country → NumberVisitsCountry FD3: Country → Continent
JD Name Zip City 100 Andersson 58214 Linköping 101 Björk 10223 Stockholm 102 Carlsson 58214 Linköping 102 Carlsson 58214 Linköping Why do we want to avoid FDs whose left-hand-side is not a superkey? • Set of attributes that is not a superkey can have repeated values	 Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with: FD1: PID → PersonName FD2: PID, Country → NumberVisitsCountry FD3: Country → Continent FD4: Continent → ContinentArea
JD Name Zip City 100 Andersson 58214 Linköping 101 Björk 10223 Stockholm 102 Carlsson 58214 Linköping PD: ID + { Name, Zip, City } FD2: ID - { Name, Zip, City } Set of attributes that is not a superkey can have repeated values So may have the attributes that depend on it	 Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with: FD1: PID → PersonName FD2: PID, Country → NumberVisitsCountry FD3: Country → Continent FD4: Continent → ContinentArea Is R in BCNF?
JD Name Zip City 100 Andersson 58214 Linköping 101 Björk 10223 Stockholm 102 Carlsson 58214 Linköping 102 Carlsson 58214 Linköping P Why do we want to avoid FDs whose left-hand-side is not a superkey? • Set of attributes that is not a superkey can have repeated values • So may have the attributes that depend on it • Hence, redundancy and, thus, waste of space and update anomalies	 Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with: FD1: PID → PersonName FD2: PID, Country → NumberVisitsCountry FD3: Country → Continent FD4: Continent → ContinentArea Is R in BCNF? Yes / No
JD Name Zip City 100 Andersson 58214 Linköping 101 Björk 10223 Stockholm 102 Carlsson 58214 Linköping 102 Carlsson 58214 Linköping • Why do we want to avoid FDs whose left-hand-side is not a superkey? • Set of attributes that is not a superkey can have repeated values • So may have the attributes that depend on it • Hence, redundancy and, thus, waste of space and update anomalies	 Recall R(PID, Country, PersonName, Continent, ContinentArea, NumberVisitsCountry) with: FD1: PID → PersonName FD2: PID, Country → NumberVisitsCountry FD3: Country → Continent FD4: Continent → ContinentArea Is R in BCNF? Yes / No What can we do about it? ► Decompose R
JD Name Zip City 100 Andersson 58214 Linköping 101 Björk 10223 Stockholm 102 Carlsson 58214 Linköping FD1: Zip → City FD2: ID → { Name, Zip, City } FD2: ID → { Name, Zip, City } Set of attributes that is not a superkey can have repeated values So may have the attributes that depend on it Hence, redundancy and, thus, waste of space and update anomalies	 Recall R(<u>PID</u>, <u>Country</u>, PersonName, Continent, ContinentArea, NumberVisitsCountry) with: FD1: PID → PersonName FD2: PID, Country → NumberVisitsCountry FD3: Country → Continent FD3: Country → Continent FD4: Continent → ContinentArea Is R in BCNF? Yes / No What can we do about it? ► Decompose R

Desirable Properties of Decompositions	 Attribute Preservation Of course, keep all the attributes from the initial schema ! Formally: Suppose attr(R) denotes the set of attributes in a relation schema R Then, given a relation schema R, a set of relation schemas R₁,, R_n is an attribute-preserving decomposition of R if attr(R) = U_{i=1n} attr(R_i)
	LINKOPING Database Technology UNIVERSITY Topic 6: Functional Dependencies and Normalization 26
 Dependency Preservation Idea: every FD of the initial schema can be recovered based on the FDs of the schemas in the decomposition Example: Consider R(Proj, Dept, Div) with FD1: Proj → Dept FD2: Dept → Div FD3: Proj → Div R is not in BCNF (why?) Two alternative decompositions into BCNF relations: D1: R1(Proj, Dept) with FD1 and R2(Dept, Div) with FD2 D2: R1(Proj, Dept) with FD1 and R3(Proj, Div) with FD3 D2 does not preserve FD2! D1 preserves FD3 because in D1, FD3 can be reconstructed by applying the transitivity rule to FD1 and FD2 	 Dependency Preservation (formally) Let <i>R</i> be a relation schema with a set <i>F</i> of FDs Let <i>R</i>₁, <i>R</i>₂,, <i>R</i>_n be a decomposition of <i>R</i> For every <i>Ri</i> we call the set of all FDs in <i>F</i>⁺ that mention only attributes from <i>Ri</i> the restriction of <i>F</i> to <i>Ri</i> Then, the decomposition is dependency preserving if for the restrictions <i>F</i>₁, <i>F</i>₂,, <i>F</i>_n of <i>F</i> to <i>R</i>₁, <i>R</i>₂,, <i>R</i>_n it holds that (<i>F</i>₁ U <i>F</i>₂ U U <i>F</i>_n)⁺ = <i>F</i>⁺
UNIVERSITY Detectional Dependencies and Normalization 27	Picture source: https://pixabay.com/en/search-to-find-internet-1013910/ UNIVERSITY Database Technology Topic 6: Functional Dependencies and Normalization 28
 Non-Additive Join Property Also called <i>lossless join property</i> It must be possible that if we join the relations R₁,, R_n, then we recover the initial relation R without generating additional tuples (also called "spurious tuples") Example for a decomposition that does not have the property Consider R (Student, Assignment, Mark) Decomposition into R1 (Student, Mark) and R2 (Assignment, Mark) There are instances of R for which joining their decomposed R1 and R2 (by R1.Mark=R2.Mark) result in another instance of R containing additional ("spurious") tuples that were not in the initial instance of R 	BCNF Decomposition Algorithm
LINKÖPING Database Technology UNVERSITY Topic 6: Functional Dependencies and Normalization 29	

