
Database Technology

Topic 6:
Functional Dependencies
and Normalization

Olaf Hartig
olaf.hartig@liu.se

2
Database Technology
Topic 6: Functional Dependencies and Normalization

Motivation

 How can we be sure that the translation of an EER diagram
into a relational schema results in a good database design?

 Given a deployed database, how can we be sure that it is
well-designed?

 What is a good database design?

• Informal measures
• Formal measure: normal forms

● Definition based on functional dependencies

Informal Measures

4
Database Technology
Topic 6: Functional Dependencies and Normalization

Example of Bad Design

 Every tuple contains employee data and department data

 Redundancy
• Dname and Dmgr_ssn repeated for every employee in a department

 Potential for too many NULL values
• Employees not in any department need to pad tuples with NULLs

 Update anomalies
• Deleting the last employee in a department

will result in deleting the department
• Changing the department name or manager

requires many tuples to be updated
• Inserting employees requires checking for

consistency of its department name and manager

5
Database Technology
Topic 6: Functional Dependencies and Normalization

Informal Measures

 Easy-to-explain meaning for each relation schema

• Each relation schema should be about
only one type of entities or relationships

• Natural result of good ER design

 Minimal redundant information in tuples

• Avoids update anomalies

• Avoids wasted space

 Minimal number of NULL values in tuples

• Avoids inefficient use of space

• Avoids costly outer joins or other
special treatment in queries

• Avoids ambiguous interpretation
(e.g., unknown vs. does not apply)

6
Database Technology
Topic 6: Functional Dependencies and Normalization

Quiz

 Consider the following relation schema for recording
information about persons and the countries they visited

R(PID, PersonName, Country, Continent,
 ContinentArea, NumberVisitsCountry)

 This relation schema ...

A. … is an example of good design

B. … does not allow for a person to have visited different countries
 a different number of times

C. … uses exactly one tuple to record a persons’s name

D. … cannot be used in a straightforward manner to record the continent
 of a country that has not been visited by any persons so far

Foundations of
Formal Measures

8
Database Technology
Topic 6: Functional Dependencies and Normalization

Functional Dependencies (FDs) – Idea

 Consider the example relation schema from our quiz

R(PID, PersonName, Country, Continent,
 ContinentArea, NumberVisitsCountry)

 Assume that no two persons have the same PID
 Thus, given a PID, there is only one possible value for PersonName

• PID → PersonName

 Similarly, if we assume that every country is in only one continent, then,
given a value for Country, there is only one possible value for Continent
• Country → Continent

9
Database Technology
Topic 6: Functional Dependencies and Normalization

Preliminary Definition

 Example:

– Let X = {name, cityOfBirth}

and let t be the first tuple in
the example table,

then, t[X] is the tuple
('Ben Afflect', 'Berkley')

– Let Y = {name,countryOfBirth},

then, t[Y] is the tuple
('Ben Afflect', ‘USA’)

Let R be a relational schema with the attributes A1, A2, …, An,
let X be a subset of {A1, A2, …, An}, and let t be a tuple for R.

Then, we write t[X] to denote the sequence of values that t
has for the attributes in set X.

 Actor

name cityOfBirth countryOfBirth

Ben Affleck Berkeley USA

Alan Arkin New York USA

Tommy Lee Jones San Saba USA

John Wells Alexandria USA

Steven Spielberg Cincinnati USA

Daniel Day-Lewis Greenwich UK

10
Database Technology
Topic 6: Functional Dependencies and Normalization

Functional Dependencies (FDs) – Definition

 Constraint between two sets of attributes from a relation

– We say “X determines Y” or “Y depends on X”

Let R be a relational schema with the attributes A1, A2, …, An
and let X and Y be subsets of {A1, A2, …, An}.

Then, the functional dependency X → Y specifies the
following constraint on any valid relation state r of R.

For any two tuples t1 and t2 in state r we have that:
if t1[X] = t2[X], then t1[Y] = t2[Y] .

11
Database Technology
Topic 6: Functional Dependencies and Normalization

Trivial Functional Dependencies

 Some dependencies must always hold

 Examples:

• {PID} → {PID}
• {PID, Country} → {PID}
• {PID, Country} → {Country}

 Formally:

• Let R be a relation schema, and
• let X and Y be subsets of attributes in R.

• If Y is a subset of X, then X → Y holds trivially, and
• we say that X → Y is a trivial functional dependency

12
Database Technology
Topic 6: Functional Dependencies and Normalization

Identifying Functional Dependencies

 Property of the semantics (the meaning) of the attributes

 Recognized and recorded as part of database design

 Given an arbitrary relation state,

• we cannot determine which FDs hold
• we can observe that an FD does not hold

if there are tuples that violate the FD

13
Database Technology
Topic 6: Functional Dependencies and Normalization

Running Example

 Consider the following relation schema

R(PID, PersonName, Country, Continent,
 ContinentArea, NumberVisitsCountry)

 Functional dependencies?

{ PID } → { PersonName }

{ PID, Country } → { NumberVisitsCountry }

{ Country } → { Continent }

{ Continent } → { ContinentArea }

14
Database Technology
Topic 6: Functional Dependencies and Normalization

Implication and Closure

 Let R be a relational schema and let F be a set of FDs for R

 Definition: F is said to logically imply an FD X → Y if this FD
holds in all instances of R that satisfy all FDs in F

• Example: F = { FD3, FD4 } with FD3: Country → Continent
 and FD4: Continent → ContinentArea

 Then, F logically implies FD5: Country → ContinentArea

 Definition: The closure of F, denoted by F+, is the set
of all FDs that are logically implied by F

 Clearly, F is a subset of F+. However, what else is in F+?

15
Database Technology
Topic 6: Functional Dependencies and Normalization

Reasoning About FDs

 Logical implications can be derived by using
inference rules called Armstrong's rules:

• Reflexivity: If Y is a subset of X, then X → Y

• Augmentation: If X → Y, then XZ → YZ
 (we use XY as a short form for X U Y)

• Transitivity: If X → Y and Y → Z, then X → Z

 These three rules are sound

• i.e., given a set F of FDs, any FD that can be derived by applying
these rules repeatedly is in F+

 These three rules are complete

• i.e., given a set F of FDs, by applying these rules repeatedly, we will
eventually find every FD that is in F+

16
Database Technology
Topic 6: Functional Dependencies and Normalization

Reasoning About FDs (cont'd)

 Logical implications can be derived by using
inference rules called Armstrong's rules:

• Reflexivity: If Y is a subset of X, then X → Y

• Augmentation: If X → Y, then XZ → YZ
 (we use XY as a short form for X U Y)

• Transitivity: If X → Y and Y → Z, then X → Z

 Additional rules can be derived:

• Decomposition: If X → YZ, then X → Y

• Union: If X → Y and X → Z, then X → YZ

• Pseudo-transitivity: If X →Y and WY → Z, then WX → Z

17
Database Technology
Topic 6: Functional Dependencies and Normalization

Running Example (cont'd)

 Recall R(PID, PersonName, Country, Continent,
 ContinentArea, NumberVisitsCountry) with:
FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

 Show that we also have FD': PID,Country→NumberVisitsCountry, Continent,
 ContinentArea, PersonName
• FD5: Country→ContinentArea (transitive rule with FD3 and FD4)
• FD6: Country→Continent, ContinentArea (union rule with FD3 and FD5)
• FD7: PID, Country→PID, Continent, ContinentArea (augmentation of FD6)
• FD8: PID, Country→Continent, ContinentArea (decomposition of FD7)
• FD9: PID, Country→PersonName (augmentation + decomposition FD1)
• Finally, FD' by union rule with FD2, FD8, and FD9

18
Database Technology
Topic 6: Functional Dependencies and Normalization

Revisiting Keys

 Given a relation schema R with attributes A1, A2, …, An
X a subset of these attributes, and F is a set of FDs for R

 X is a superkey of R if X → {A1, A2, …, An} is in F+

• Often written as X → R

 Given a set F of FDs, how can we easily test whether X → R is in F+?

• If the attribute closure of X contains all attributes, we have X → R

• The attribute closure can be computed in polynomial time ...

Let F be a set of FDs over the attributes of a relation R
and let X be a subsets of these attributes.
The attribute closure of X w.r.t. F is the maximum set of
attributes functionally determined by X.

Picture source: https://pixabay.com/en/key-keychain-house-keys-door-key-2744636/

19
Database Technology
Topic 6: Functional Dependencies and Normalization

Computing (Super)Keys

function ComputeAttrClosure(X, F)

begin
X+ := X;
while F contains an FD Y → Z such that
 (i) Y is a subset of X+, and
 (ii) Z is not a subset of X+ do

X+ := X+ U Z;
end while
return X+;

end Example: Recall R(PID, PersonName, Country, Continent,
 ContinentArea, NumberVisitsCountry) with:
FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

• The attribute closure of X = { PID, Country } w.r.t. FD1–FD4 is { PID,
 Country, PersonName, NumberVisitsCountry, Continent, ContinentArea }

20
Database Technology
Topic 6: Functional Dependencies and Normalization

Revisiting Keys (cont'd)

 Given a relation schema R with attributes A1, A2, …, An
X a subset of these attributes, and F is a set of FDs for R

 X is a superkey of R if X → {A1, A2, …, An} is in F+

• Often written as X → R

• Can be tested easily by computing the attribute closure of X

 However, not every superkey is a candidate key

 To determine that X is a candidate key of R, we also
need to show that no proper subset of X determines R

• i.e., there does not exist a Y such that Y ⊊ X and Y → R

 Hence, identifying all candidate keys is a matter of
testing increasingly smaller subsets of { A1, A2, …, An }

Picture source: https://pixabay.com/en/key-keychain-house-keys-door-key-2744636/

Normal Forms

22
Database Technology
Topic 6: Functional Dependencies and Normalization

Overview

 (1NF, 2NF,) 3NF, BCNF (4NF, 5NF)
– BCNF: Boyce-Codd Normal Form

 Relation in higher normal form also satisfies
the conditions of every lower normal form

 The higher the normal form, the less the redundancy

 3NF and BCNF are our formal measure of good database design
– Reduce redundancy
– Reduce update anomalies

 Normalization: process of turning a set of relations that are in
lower normal forms into relations that are in higher normal forms

– by successively decomposing lower normal form relations

23
Database Technology
Topic 6: Functional Dependencies and Normalization

Boyce-Codd Normal Form (BCNF)

 Relation schema R with a set F of functional dependencies is in BCNF
if for every non-trivial FD X→Y in F+ we have that X is a superkey

– Note that it is sufficient to check the FDs in F

 Example relation that is not in BCNF:

 Why do we want to avoid FDs whose left-hand-side is not a superkey?

• Set of attributes that is not a superkey can have repeated values
• So may have the attributes that depend on it
• Hence, redundancy and, thus, waste of space and update anomalies

 ID Name Zip City
100 Andersson 58214 Linköping
101 Björk 10223 Stockholm
102 Carlsson 58214 Linköping

FD1: Zip → City

FD2: ID → { Name, Zip, City }

24
Database Technology
Topic 6: Functional Dependencies and Normalization

Quiz (Running Example)

 Relation schema R with a set F of functional dependencies is in BCNF
if for every non-trivial FD X→Y in F+ we have that X is a superkey

 Recall R(PID, Country, PersonName, Continent,
 ContinentArea, NumberVisitsCountry) with:
FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

 Is R in BCNF?
 Yes / No

 What can we do about it? ► Decompose R

Desirable Properties
of Decompositions

26
Database Technology
Topic 6: Functional Dependencies and Normalization

Attribute Preservation

 Of course, keep all the attributes from the initial schema !

 Formally:

– Suppose attr(R) denotes the set of attributes in a relation schema R

– Then, given a relation schema R, a set of relation schemas
R1, …, Rn is an attribute-preserving decomposition of R if

 attr(R) = Ui=1...n attr(Ri)

27
Database Technology
Topic 6: Functional Dependencies and Normalization

Dependency Preservation

 Idea: every FD of the initial schema can be recovered
based on the FDs of the schemas in the decomposition

 Example: Consider R(Proj, Dept, Div) with FD1: Proj → Dept
 FD2: Dept → Div
 FD3: Proj → Div

• R is not in BCNF (why?)

• Two alternative decompositions into BCNF relations:

D1: R1(Proj, Dept) with FD1 and R2(Dept, Div) with FD2

D2: R1(Proj, Dept) with FD1 and R3(Proj, Div) with FD3

• D2 does not preserve FD2!

• D1 preserves FD3 because in D1, FD3 can be reconstructed
by applying the transitivity rule to FD1 and FD2

28
Database Technology
Topic 6: Functional Dependencies and Normalization

Dependency Preservation (formally)

 Let R be a relation schema with a set F of FDs
 Let R1, R2, …, Rn be a decomposition of R

 For every Ri we call the set of all FDs in F+ that mention
only attributes from Ri the restriction of F to Ri

 Then, the decomposition is dependency preserving if for
the restrictions F1, F2, …, Fn of F to R1, R2, …, Rn it
holds that
 (F1 U F2 U … U Fn)+ = F+

Picture source: https://pixabay.com/en/search-to-find-internet-1013910/

29
Database Technology
Topic 6: Functional Dependencies and Normalization

Non-Additive Join Property

 Also called lossless join property

 It must be possible that if we join the relations R1, …, Rn,
then we recover the initial relation R without generating
additional tuples (also called “spurious tuples”)

 Example for a decomposition that does not have the property
• Consider R(Student, Assignment, Mark)
• Decomposition into R1(Student, Mark) and R2(Assignment, Mark)
• There are instances of R for which joining their decomposed R1 and

R2 (by R1.Mark=R2.Mark) result in another instance of R containing
additional (“spurious”) tuples that were not in the initial instance of R

Student Assignment Mark

Alice A1 100

Bob A1 80

Bob A2 100

BCNF Decomposition Algorithm

31
Database Technology
Topic 6: Functional Dependencies and Normalization

Decomposition Step

 Let X → Y be the FD that violates BCNF in a relation schema R
 Replace R by two new relation schemas R1 and R2 constructed as follows
 Create R1 with all the attributes in X and in Y
 Create R2 from R by removing all attributes that are in Y and not in X

 Example: recall the example relation that was not in BCNF

 Note that R1 or R2 may still not be in BCNF

 ID Name Zip City
100 Andersson 58214 Linköping
101 Björk 10223 Stockholm
102 Carlsson 58214 Linköping

FD1: Zip → City

FD2: ID → { Name, Zip, City }

 ID Name Zip
100 Andersson 58214
101 Björk 10223
102 Carlsson 58214

Decompose

 Zip City
58214 Linköping
10223 Stockholm

with FD1
with FD3: ID→ {Name, ZIP}

32
Database Technology
Topic 6: Functional Dependencies and Normalization

Algorithm

function DecomposeBCNF(R, F)

begin
Result := R;
while there is a relation schema Ri in Result for which

 the restriction of F+ to Ri contains a non-trivial
 FD X → Y that violates the BCNF condition

do
Decompose Ri into Ri1 and Ri2 as on the previous slide;
Replace Ri in Result by Ri1 and Ri2;

end while

return Result;
end

33
Database Technology
Topic 6: Functional Dependencies and Normalization

Running Example (cont'd)

 Recall R(PID, Country, PersonName, Continent,
 ContinentArea, NumberVisitsCountry) with:
FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

 R is not in BCNF (FD1, FD3, and FD4 violate the BCNF condition)

 By using FD1, we decompose R into

• R1(PID, PersonName) with FD1, and

• R2(PID, Country, Continent, ContinentArea, NumberVisitsCountry)
 with FD2, FD3, and FD4 (and others)

 Now, R1 is in BCNF, but R2 is not because of FD3 and FD4 (and others)

• Hence, we need to decompose R2 further ...

34
Database Technology
Topic 6: Functional Dependencies and Normalization

Running Example (cont'd)

 Recall R(PID, Country, PersonName, Continent,
 ContinentArea, NumberVisitsCountry) with:
FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

 Given R2(PID, Country, Continent, ContinentArea, NumberVisitsCountry)
 with FD2, FD3, and FD4 (and others)

 We may decompose R2 by using FD3, in which case we would end up
with a BCNF decomposition of R that is not dependency preserving

35
Database Technology
Topic 6: Functional Dependencies and Normalization

Running Example (cont'd)

 Recall R(PID, Country, PersonName, Continent,
 ContinentArea, NumberVisitsCountry) with:
FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

 Given R2(PID, Country, Continent, ContinentArea, NumberVisitsCountry)
 with FD2, FD3, and FD4 (and others)

 Let's use FD4 instead, which gives us

• R2X(Continent, ContinentArea) with FD4, and

• R2Y(PID, Country, Continent, NumberVisitsCountry)
 with FD2 and FD3 (and others)

 R2X is in BCNF, but R2Y still is not because of FD3

36
Database Technology
Topic 6: Functional Dependencies and Normalization

Running Example (cont'd)

 Recall R(PID, Country, PersonName, Continent,
 ContinentArea, NumberVisitsCountry) with:
FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

 Given R2Y(PID, Country, Continent, NumberVisitsCountry)
 with FD2 and FD3 (and others)

 Since FD3 violates BCNF for R2Y we use it to decompose R2Y into

• R2YA(Country, Continent) with FD3, and

• R2YB(PID, Country, NumberVisitsCountry) with FD2

 Finally, R2YA and R2YB are also in BCNF

 Hence, the result of decomposing R consists of R1, R2X, R2YA, and R2YB

37
Database Technology
Topic 6: Functional Dependencies and Normalization

Properties of the Algorithm

 Results depend on the FDs chosen for the decomposition steps

 Any resulting decomposition has the non-additive join property (lossless)

 Finding a dependency-preserving decomposition is not guaranteed,
– even if one exists and may be found by choosing other

(BCNF-violating) FDs for the decomposition steps

 For some cases, there does not exist any decomposition into
BCNF relations that is lossless and dependency preserving

– Example: R(A, B, C) with FD1: AB → C and FD2: C → B
– For 3NF, there always exists a decomposition

that is lossless and dependency preserving
(but our algorithm is not guaranteed to find it)

www.liu.se

