
TDDD25

Distributed Systems

Time and State in

Distributed Systems

Christoph Kessler

IDA
Linköping University

Sweden

2

Agenda

TIME AND STATE IN DISTRIBUTED SYSTEMS

1. Time in Distributed Systems

2. Lamport’s Logical Clocks

3. Vector Clocks

4. Causal Ordering of Messages

5. Global States and their Consistency

6. Cuts of a Distributed Computation

7. Recording of a Global State (“Snapshot”)

3

Time in Distributed Systems

▪ Because each machine in a distributed system has its own clock,

there is no notion of global physical time.

▪ The n crystals on the n computers will run at slightly different

rates, causing the clocks gradually to get out of synchronization

and give different values.

▪ Problems:

▪ Time triggered systems: systems in which activities are

scheduled to occur at predefined moments in time.

If activities are to be coordinated over a distributed system,

we need a coherent notion of time.

Example: time-triggered real-time systems

▪ Maintaining the consistency of distributed data is often based

on the time when a certain modification has been performed.

Example: a make program →

4

Time in Distributed Systems

The make-program example

▪ When the programmer has finished changing some source files,
she starts make

▪ make examines the times at which object and source files were
last modified, and decides which sources have to be (re)compiled

▪ Although P.c is modified after P.o has been generated,
because of the clock drift the time assigned to P.c is smaller.

→ P.c will not be recompiled for the new version!

previous version of

modified version of

5

Time in Distributed Systems

Solutions:

▪ Synchronization of physical clocks

▪ Computer clocks are synchronized with one another
to an achievable, known, degree of accuracy
→ within the bounds of this accuracy, we can coordinate activities
 on different computers using each computer’s local clock.

▪ Clock synchronization is needed for distributed real-time systems.

▪ Logical clocks

▪ In many applications we are not interested in the physical time at which
events occur; what is important is the relative order of events.

The make-program is such an example.

▪ In such situations we do not need synchronized physical clocks.

▪ Relative ordering is based on a virtual notion of time - logical time.

▪ Logical time is implemented using logical clocks.

6

Lamport’s Logical Clocks

▪ The order of events occurring at different processes is critical for many
distributed applications.

▪ Example: P.o_created and P.c_created in make-program example.

▪ Ordering can be based on two simple situations:

1. If two events occurred in the same process, then they occurred
 in the order observed following the respective process;

2. Whenever a message is sent between processes, the event of
 sending the message occurred before the event of receiving it.

▪ Ordering by Lamport is based on happened-before relation (denoted “→“):

▪ a → b, if a and b are events in the same process
 and a occurred before b;

▪ a → b, if a is the event of sending a message m in a process,
 and b is the event of the same message m being received
 by another process.

If a → b and b → c, then a → c (the relation → is transitive).

7

Lamport’s Logical Clocks

▪ If a → b, we say that event a causally affects event b.

▪ The two events are causally related.

▪ There are events which are not related by the happened-before relation.

▪ If both a → e and e → a are false,
then a and e are concurrent events:

we write a || e.

Example:

a → b, c → d, e → f,

b → c, d → f

a → c, a → d, a → f,

b → d, b → f, ...

a || e, c || e, ...

8

Lamport’s Logical Clocks

Using physical clocks, the happened-before relation cannot be captured.

▪ It is possible that b → c and at the same time Tb > Tc
(where Tb is the physical time of event b).

Logical clocks can be used to capture the happened-before relation.

▪ A logical clock is a monotonically increasing software counter.

▪ There is a logical clock CPi at each process Pi in the system.

▪ The value of the logical clock is used to assign timestamps to events.

▪ CPi(a) is the timestamp of event a in process Pi.

▪ There is no relationship between a logical clock and any physical clock.

To capture the happened-before relation,
logical clocks have to be implemented so that:

▪ if a → b, then C(a) < C(b)

9

Lamport’s Logical Clocks

Implementation of logical clocks is performed using the following rules for
updating the clocks and transmitting their values in messages:

[R1]: Each event issued at process Pi is timestamped with the value obtained
 after incrementing the local clock CPi: CPi := CPi + 1.

[R2]: a) If a is the event of sending a message m from process Pi,
 then the timestamp tm = CPi(a) is included in m
 (CPi(a) is the logical clock value obtained after applying rule R1).

 b) On receiving message m by process Pj,
 its logical clock CPj is updated as follows:

 CPj := max (CPj, tm).

 c) The new value of CPj is used to timestamp the event of
 receiving message m by Pj (applying rule R1).

▪ If a and b are events in the same process and a occurred before b,
then a → b, and (by R1) C(a) < C(b).

▪ If a is the event of sending a message m in a process,
and b is the event of the same message m being received by another process,
then a → b, and (by R2) C(a) < C(b).

▪ If a → b and b → c, then a → c, and (by induction) C(a) < C(c).

10

Lamport’s Logical Clocks

Example

1

1

2

2

(0)

(0)

(0)

3 4

5

4

11

Problems with Lamport’s Logical Clocks (1)

▪ Lamport’s logical clocks impose only a partial order on the set of

events

▪ pairs of distinct events generated by different processes can

have identical timestamp.

▪ For certain applications a total ordering is needed;

they consider that no two events can occur at the same time.

▪ In order to enforce total ordering,

a global logical timestamp is introduced:

▪ The global logical timestamp of an event a occurring at process

Pi, with logical timestamp CPi(a), is a pair (CPi(a), i),

where i is an identifier of process Pi

▪ We define

(CPi(a), i) < (CPj(b), j) if and only if CPi(a) < CPj(b),

 or CPi(a) = CPj(b) and i < j.
= lexical order on pairs

12

Lamport’s Logical Clocks

Example

1

1

2

2

(0)

(0)

(0)

3 4

5

4

13

Lamport’s Logical Clocks
with Global Logical Timestamps

Example

(1,1)

(1,3)

(2,1)

2

(0)

(0)

(0)

(3,2) (4,2)

(5,3)
4

14

Problems with Lamport’s Logical Clocks (2)

▪ Lamport’s logical clocks are not powerful enough to perform a causal
ordering of events.

We have seen earlier:

▪ if a → b, then C(a) < C(b).

However, the reverse is not always true:

▪ if C(a) < C(b), then a → b is not necessarily true.

(it is only guaranteed that b → a is not true).

C(e) < C(b),

however there is no causal

relation from event e to event b.

By just looking at the timestamps

of the events, we cannot say

whether two events are causally

related or not.

If C(x) < C(y),

it might be that x → y or x || y

15

Problems with Lamport’s Logical Clocks

We want messages received by P3 to be processed in their causal order.

Can we use the associated timestamp for this purpose?

▪ Process P3 receives messages MA, MB, MC, and MD.

▪ send(MA) → send(MC), send(MA) → send(MB),

▪ send(MB) || send(MC), send(MA) || send(MD),

▪ send(MB) || send(MD), send(MC) || send(MD).

16

Problems with Lamport’s Logical Clocks

send(MA) → send(MC), send(MA) → send(MB)
→ process MA before MC and MB

But, P3 needs not wait for MB and MD in order to process them before MC;
similarly, the delivery of MB is not needed to be delayed after that of MD.

By processing the messages in order of their timestamp, all happened-before
relations will be correctly enforced, but additional, unneeded, delays will be
introduced (due to enforcement of ordering where, in fact, not needed).

17

Vector Clocks

▪ Vector clocks give the ability to decide whether two events are
causally related or not by simply looking at their timestamp.

▪ Each process Pi has a clock Cv
Pi

▪ Cv
Pi is an integer vector of length n

n is the number of processes

▪ The value of Cv
Pi is used to assign timestamps to events in

process Pi.

Cv
Pi(a) is the timestamp of event a in process Pi.

▪ Cv
Pi[i], the ith entry of Cv

Pi, corresponds to an event counter in Pi

simply, counts the events in Pi

▪ Cv
Pi[j], for j  i, is Pi’s "best guess" of the local event counter at Pj

▪ Cv
Pi[j] indicates the value of the local event counter of Pj

at the occurrence of the last event at Pj which is in a
happened-before relation to the current event at Pi.

18

Vector Clocks Example (n=3)

19

Vector Clocks

20

Vector Clocks

21

Vector Clocks

22

Vector Clocks

23

Vector Clocks

24

Vector Clocks

25

Vector Clocks

Implementation of vector clocks is performed using the following rules
for updating the clocks and transmitting their values in messages:

[R1]: Each event issued at process Pi is timestamped with the
 value of the vector clock Cv

Pi obtained after incrementing
 the corresponding element Cv

Pi[i]: C
v
Pi[i] := Cv

Pi[i] + 1.

[R2]: (a) If a is the event of sending a message m from process Pi,
 then the timestamp tm = Cv

Pi(a) is included in m
 (Cv

Pi(a) is the vector clock value obtained after applying rule R1).

(b) On receiving message m by process Pj,
 its vector clock Cv

Pj is updated as follows:

 k in { 1, 2,.., n }, Cv
Pj[k] := max (Cv

Pj[k], tm[k])

(c) The new value of Cv
Pj is used to timestamp the event

 of receiving message m by Pj (applying rule R1).

26

Vector Clocks

For any two vector timestamps u and v, we have:

▪ u = v if and only if i, u[i] = v[i]

▪ u < v if and only if i, u[i] < v[i]

▪ u < v if and only if u < v  u  v)

▪ u || v if and only if ¬(u < v)  ¬(v < u)

Two events a and b are causally related if and only if Cv(a) < Cv(b)  Cv(b) < Cv(a).

Otherwise, the events are concurrent.

27

Vector Clocks

Vector clocks have the property which we missed for Lamport’s

clocks:

▪ a → b if and only if Cv(a) < Cv(b).

Thus, by just looking at the timestamps of the events,

we can tell whether two events are causally related or not.

→ Vector clocks can be used for

 causal ordering of events/messages.

28

Global States

The problem is how to collect and record
a consistent global state in a distributed system.

▪ “State” is application-specific

▪ Example use cases:

▪ Monitoring of a distributed shared data structure

Bank account example →

▪ Distributed garbage collection

▪ Progress monitoring for dynamic load balancing

▪ Distributed deadlock detection

▪ Why a problem?

▪ Because there is no global clock (no coherent notion of
time) and no shared memory!

29

Global States

Consider a bank system
with two accounts A and B at two different sites;
we transfer $50 between A and B.

30

Global States

▪ In general, a global state consists of

▪ a set of local states and

▪ a set of states of the communication channels.

▪ The state of a communication channel in a consistent global
state should be the sequence of messages sent along the
channel before the sender’s state was recorded,
excluding the sequence of messages received along the
channel before the receiver’s state was recorded.

▪ It is difficult to record channel states to ensure the above rule

→ global states are very often recorded without using
 channel states.

This is the case in the definition below.

31

Formal Definition (1)

▪ LSi is the local state of process Pi.

▪ Beside other information, the local state also includes a

record of all messages sent and received by the process.

▪ We consider the global state GS of a system

as the collection of the local states of its processes:

GS = (LS1, LS2, ..., LSn).

▪ A certain global state can be consistent or not!

32

Formal Definition (2)

send(mk
ij) denotes the event of sending message mk

ij from Pi to Pj

rec(mk
ij) denotes the event of receiving message mk

ij by Pj.

▪ send(mk
ij)  LSi if and only if the sending event occurred before

the local state was recorded;

▪ rec(mk
ij)  LSj if and only if the receiving event occurred before

the local state was recorded.

transit(LSi, LSj) = { mk
ij | send(mk

ij)  LSi  rec(mk
ij)  LSj }

inconsistent(LSi, LSj) = { mk
ij | send(mk

ij)  LSi  rec(mk
ij)  LSj }

33

Formal Definition (3)

▪ A global state GS = (LS1, LS2, ..., LSn) is consistent if and only if:

i, j: 1 < i, j < n :: inconsistent(LSi,LSj) = Ø

▪ In a consistent global state, for every received message a
corresponding send event is recorded in the global state.

▪ In an inconsistent global state, there is at least one message whose
receive event is recorded but its send event is not recorded.

▪ A global state GS = (LS1, LS2, ..., LSn) is transitless if and only if:

i, j: 1 < i, j < n :: transit(LSi,LSj) = Ø

▪ All messages recorded to be sent are also recorded to be received.

▪ A global state is strongly consistent if it is consistent and transitless.

▪ A strongly consistent state corresponds to a consistent state in which
all messages recorded as sent are also recorded as received.

Note: the global state, as defined here, is seen as a collection of the local
states, without explicitly capturing the state of the channel.

34

Example

▪ (LS11, LS22, LS32) is ...inconsistent

35

Example

▪ (LS12, LS23, LS33) is ...consistent

36

Example

▪ (LS11, LS21, LS31) is ...strongly consistent

37

Example (2)

After registering of the receive event(s),

a consistent state becomes strongly consistent.

It is considered to be a normal (transient) situation.

38

Cuts of a Distributed Computation

▪ A cut is a graphical representation of a global state.

▪ A consistent cut is a graphical representation of a consistent
global state.

▪ A cut of a distributed computation is a set

Ct = { c1, c2, ..., cn}, where ci is the cut event at process Pi.

▪ A cut event is the event of recording a local state of the process.

Example:

{ c1, c2, c3 } is a cut

39

Cuts of a Distributed Computation

▪ Let ek denote an event at process Pk.

▪ A cut Ct = { c1, c2, ..., cn } is a consistent cut if and only if

Pi, Pj, if ei, ej such that (ei → ej)  (ej → cj) then ¬(ci → ei)

▪ A cut is consistent if every message that was received before a
cut event was sent before the cut event at the sender process.

{ c1, c4, c5 } is ... ?not consistent, as (e1 → e2)  (e2 → c4)  (c1 → e1)

Old

▪

▪

40

Cuts of a Distributed Computation

Theorem

A cut Ct = { c1, c2, ..., cn } is a consistent cut
if and only if no two cut events are causally related,
that is, ci, cj  Ct: ¬(ci → cj)  ¬(cj → ci)

▪ A set of concurrent cut events forms a consistent cut.

▪ { c1, c2, c3 } ?

▪ { c6, c7, c8 } ?

▪ { c1, c4, c5 } ?

strongly consistent (no communication line is crossed)

consistent (comm. line crossed, but no causal relation)

not consistent (c1→c4)

41

Global State Recording

(Chandy-Lamport Algorithm)

▪ The algorithm records:

▪ a collection of local states,
which give a consistent global state of the system, and

▪ the state of the channels,
which is consistent with the collected global state.

▪ Such a recorded "view" of the system is called a snapshot.

▪ We assume here that

▪ processes are connected through one-directional channels and
message delivery is FIFO.

▪ the graph of processes and channels is strongly connected
(there exists a path between any two processes).

▪ The algorithm is based on the use of a special message, the
snapshot token, in order to control the state collection process.

42

Global State Recording

How to collect a global state?

▪ A process Pi records its local state LSi
and later sends a message m to Pj

▪ LSj at Pj has to be recorded before Pj has received m.

▪ The channel state SChij of the channel Chij consists of all
messages that process Pi sent before recording LSi and which have
not been received by Pj when recording LSj.

▪ A snapshot is started at the request of a particular process Pi,
for example, when Pi suspects a deadlock because of long delay in
accessing a resource.
Pi then records its state LSi and, before sending any other
message, it sends a token to every Pj that Pi communicates with.

▪ When Pj receives a token from Pi, and this is the first time it
received a token, it must record its state before it receives the next
message from Pi.
After recording its state, Pj sends a token to every process it
communicates with, before sending them any other message.

Pi

Pj

43

Global State Recording

44

Global State Recording

45

Global State Recording

46

Global State Recording

47

Global State Recording

48

Global State Recording

49

Global State Recording

Channel states?

▪ Pi sends a token to Pj and this is the first time Pj received a token
→ Pj immediately records its state.
All messages sent by Pi before sending the token
have been received at Pj
→ SChij := Ø.

▪ Pj receives a token from Pk, but Pj already recorded its state.

▪ M is the set of messages that Pj received from Pk
after Pj recorded its state and
before Pj received the token from Pk
→ SChkj := M.

▪ The algorithm terminates when all
processes have received tokens
on all their input channels.

▪ The process that initiated the
snapshot should be informed;
it can collect the global snapshot.

50

Global State Recording

▪ Rule for sender Pi:

/* performed by the initiating process
 and by any other process at the reception of the first token */

[SR1]: Pi records its state.

[SR2]: Pi sends a token on each of its outgoing channels.

▪ Rule for receiver Pj:

/* executed whenever Pj receives a token from another process Pi
 on channel Chij */

[RR1]: if Pj has not yet recorded its state then

 Record the state of the channel: SChij := Ø.

 Follow the "Rule for sender".

 else

 Record the state of the channel: SChij := M,
 where M is the set of messages that Pj received from Pi
 after Pj recorded its state and
 before Pj received the token on Chij.

 end if.

51

Acknowledgments

▪ Most of the slide contents is based on a previous version

by Petru Eles, IDA, Linköping University.

	Slide 1: TDDD25 Distributed Systems Time and State in Distributed Systems
	Slide 2: Agenda
	Slide 3: Time in Distributed Systems
	Slide 4: Time in Distributed Systems
	Slide 5: Time in Distributed Systems
	Slide 6: Lamport’s Logical Clocks
	Slide 7: Lamport’s Logical Clocks
	Slide 8: Lamport’s Logical Clocks
	Slide 9: Lamport’s Logical Clocks
	Slide 10: Lamport’s Logical Clocks
	Slide 11: Problems with Lamport’s Logical Clocks (1)
	Slide 12: Lamport’s Logical Clocks
	Slide 13: Lamport’s Logical Clocks with Global Logical Timestamps
	Slide 14: Problems with Lamport’s Logical Clocks (2)
	Slide 15: Problems with Lamport’s Logical Clocks
	Slide 16: Problems with Lamport’s Logical Clocks
	Slide 17: Vector Clocks
	Slide 18: Vector Clocks Example (n=3)
	Slide 19: Vector Clocks
	Slide 20: Vector Clocks
	Slide 21: Vector Clocks
	Slide 22: Vector Clocks
	Slide 23: Vector Clocks
	Slide 24: Vector Clocks
	Slide 25: Vector Clocks
	Slide 26: Vector Clocks
	Slide 27: Vector Clocks
	Slide 28: Global States
	Slide 29: Global States
	Slide 30: Global States
	Slide 31: Formal Definition (1)
	Slide 32: Formal Definition (2)
	Slide 33: Formal Definition (3)
	Slide 34: Example
	Slide 35: Example
	Slide 36: Example
	Slide 37: Example (2)
	Slide 38: Cuts of a Distributed Computation
	Slide 39: Cuts of a Distributed Computation
	Slide 40: Cuts of a Distributed Computation
	Slide 41: Global State Recording
	Slide 42: Global State Recording
	Slide 43: Global State Recording
	Slide 44: Global State Recording
	Slide 45: Global State Recording
	Slide 46: Global State Recording
	Slide 47: Global State Recording
	Slide 48: Global State Recording
	Slide 49: Global State Recording
	Slide 50: Global State Recording
	Slide 51: Acknowledgments

