
TDDD25

Distributed Systems

Communication

in Distributed Systems

Christoph Kessler

IDA
Linköping University

Sweden

2

Agenda

COMMUNICATION IN DISTRIBUTED SYSTEMS

1. Communication System: Layered Implementation

2. Network Protocol

3. Request and Reply Primitives

4. RMI and RPC

5. RMI and RPC Semantics and Failures

6. Indirect Communication

7. Group Communication

8. Publish-Subscribe Systems

3

Communication Models

and their Layered Implementation

In this chapter:

▪ Communication between distributed objects by means of two models:

▪ Remote Method Invocation (RMI)

▪ Remote Procedure Call (RPC)

▪ RMI, as well as RPC, are implemented on top of request and reply primitives.

▪ Request and reply are implemented on top of the network protocol
(e.g. TCP or UDP in case of the internet).

Applications and Services

RMI, RPC

Request and Reply

Operating System and Network Protocol

Hardware: Computer and Network

Middleware

4

Network Protocol

▪ Middleware and distributed applications are implemented on top of

a network protocol. Such a protocol is implemented as several

layers.

▪ In case of the Internet:

▪ TCP (Transport Control Protocol) and

UDP (User Datagram Protocol) are both transport protocols

implemented on top of the Internet Protocol (IP).

Middleware

TCP or UDP

Applications and Services

IP

5

TCP Network Protocol

TCP is a reliable protocol.

▪ TCP guarantees the delivery to the receiving process of all data delivered by
the sending process, in the same order.

▪ TCP implements mechanisms on top of IP to meet reliability guarantees.

▪ Sequencing:

 A sequence number is attached to each transmitted segment (packet).
At the receiver side, packets are delivered in order of this number.

▪ Flow control:

 The sender takes care not to overwhelm the receiver. This is based on
periodic acknowledgements received by the sender from the receiver.

▪ Retransmission and duplicate handling:

 If a segment is not acknowledged within a timeout, it is retransmitted.
Using sequence number, the receiver detects and rejects duplicates.

▪ Buffering:

 Buffering balances the flow. If the receiving buffer is full, incoming
segments are dropped. They will be retransmitted by the sender.

▪ Checksum:

 Each segment carries a checksum. If the received segment does not
match the checksum, it is dropped (and will be retransmitted).

6

UDP Network Protocol

UDP is a protocol that does not guarantee reliable transmission.

▪ UDP offers no guarantee of delivery.

▪ According to the IP, packets may be dropped because of

congestion or network error.

UDP adds no reliability mechanism to this.

▪ UDP provides a means of transmitting messages with minimal

additional costs or transmission delays above those due to IP

transmission.

▪ Its use is restricted to applications and services that do not require

reliable delivery of messages.

▪ If reliable delivery is requested with UDP, reliability mechanisms

have to be implemented on top of the network protocol (in the

middleware).

8

Request and Reply Primitives

▪ Communication between processes and objects in a distributed

system is performed by message passing.

▪ In a typical scenario (e.g. client-server model), such a

communication is through request and reply messages.

9

Request-Reply Primitives

in the Client-Server Model

▪ The system is structured as a group of processes (objects), called

servers, that deliver services to clients.

The client:

…

send (request) to server_reference;

receive (reply);

…

The server:

…

receive (request) from client-reference;

execute requested operation

send (reply) to client_reference;

…

10

Remote Method Invocation (RMI) and

Remote Procedure Call (RPC)

The goal: make, for the programmer, distributed computing look
 like centralized computing.

The solution:
Asking for a service is solved by the client issuing a method invocation
or procedure call; this is a remote invocation (call).

▪ RMI (RPC) is transparent: the calling object (procedure) is not
aware that the called one is executing on a different machine,
and vice versa.

Applications and Services

RMI, RPC

Request and Reply

Operating System and Network Protocol

Hardware: Computer and Network

Middleware

11

Remote Method Invocation

The client code contains the call:

…

server_id.service (arg_values_to_server,
 locations_for_result_arguments);

…

The server code contains the method:

public service (in type1 arg_from_client,
 out type2 arg_to_client)

{ … };

The programmer is

unaware of the request

and reply messages

which are sent over the

network during

execution of the RMI.

12

Implementation of RMI
”Skeleton”: a server-side proxy

object calling the service object

like a local caller would do

”Stub”: a client-side proxy object

with same interface as the service B,

taking A’s call and issuing a RMI call

M
id

d
le

w
a
re

c
o
d
e
/d

a
ta

 (
lib

ra
ry

)
A

p
p
lic

a
ti
o
n

c
o
d
e
/d

a
ta

Stub /

13

Implementation of RMI

Question 1

▪ What if the two computers use different representations for data
(integers, chars, floating point)?

▪ The most elegant and flexible solution is to have a standard
representation used for all values sent through the network.

▪ The stub/proxy and skeleton convert to/from this representation
during marshalling/unmarshalling.

Question 2

▪ Who generates the classes for stub/proxy and skeleton?

▪ In advanced middleware systems (e.g. CORBA) the classes for
proxies and skeletons can be generated automatically.

Given the specification of the server interface and the
standard data representations, an interface compiler can
generate the (source) code for stubs/proxies and skeletons.

14

Implementation of RMI

▪ Object A and Object B belong to the application.

▪ Remote reference module and communication module belong

to the RMI middleware.

▪ The stub (client-side proxy object for B) and

the skeleton (server-side proxy object for remote callers to B)

represent the so-called RMI software.

▪ Glue code, specific to the function/method being called

▪ Situated at the border between middleware and application

▪ Generated automatically with help of available tools that are

delivered together with the middleware software.

▪ Transparent to the application core code

the call in A and the service B’s code need not be modified to

enable RMI

15

The life of a RMI communication

1. The calling sequence in the client object calls the method in the stub (client-
side proxy) corresponding to the invoked method in B.

2. The method in the stub packs the arguments into a message (marshalling)
and forwards it to the communication module.

3. Based on the remote reference obtained from the remote reference module,
the communication module initiates the request/reply protocol over the
network.

4. The communication module on the server’s machine receives the request.
Based on the local reference received from the remote reference module, it
calls the corresponding method in the skeleton for B.

5. The skeleton method extracts the arguments from the received message
(unmarshalling) and calls the corresponding method in the server object B.

6. After receiving the results from B, the method in the skeleton packs them into
the message to be sent back (marshalling) and forwards this message to the
communication module.

7. The communication module sends the reply, through the network, to the
client’s machine.

8. The communication module receives the reply and forwards it to the
corresponding method in the stub.

9. The stub method extracts the results from the received message
(unmarshalling) and forwards them to the client.

16

Remote Procedure Call

Server skeleton

17

RMI Semantics and Failures

If everything works OK, RMI behaves exactly like a local invocation.

What if certain failures occur?

Classes of failures that have to be handled by an RMI protocol:

1. Lost request message

2. Lost reply message

3. Server crash

4. Client crash

We consider an omission failure model. This means:

▪ Messages are either lost or received correctly.

▪ Client or server processes either crash or execute correctly. After a
crash, the server can possibly restart with or without loss of
memory.

18

Lost Request Messages

▪ The communication module starts a timer when sending the request

▪ If the timer expires before a reply or acknowledgment comes back,
the communication module sends the request message again.

Problem!

What if the request message was not truly lost (but, for example,
the server is too slow) and the server receives it more than once?

▪ We must avoid that the server executes operations more than once.

▪ Messages have to be identified by an identifier
and copies of the same message have to be filtered out:

▪ If the duplicate arrives and the server has not yet sent the reply
 → simply send the reply.

▪ If the duplicate arrives after the reply has been sent
 → the reply may have been lost or it did not arrive in time.

19

Lost Reply Message

The client can not distinguish the loss of a request from that of a reply;
it simply resends the request because no answer has been received!

▪ If the reply really got lost → when the duplicate request arrives at
the server, it already has executed the operation once!

▪ In order to resend the reply, the server may need to re-execute the
operation in order to get the result.

Danger?!

▪ Some operations can be executed more than once without any
problem; they are called idempotent operations
 → no danger with executing the duplicate request.

▪ There are operations which cannot be executed repeatedly without
changing the effect (e.g. transferring an amount of money between
two accounts)
 → history can be used to avoid re-execution.

History (log): stores a record of reply messages that have been
transmitted, together with the message identifier and the client which it
has been sent to.

20

Conclusion with Lost Messages

▪ Exactly-once semantics can be implemented in the case of lost

(request or reply) messages if both duplicate filtering and history

are provided and the message is resent until an answer arrives:

▪ Eventually a reply arrives at the client and the call has been

executed correctly - exactly one time.

▪ However, the situation is different if we assume that the server can

crash…

21

Server Crash

(a) The normal sequence:

(b) The server crashes after

executing the operation, but

before sending the reply:

▪ As result of the crash, the

server lost memory and

does not remember that it

has executed the operation.

(c) The server crashes

before executing the

operation:

Big problem!

The client cannot

distinguish

between these

cases.

What to do if the

client noticed

that the server

might be down?

(it did not answer

to repeated

requests)?

22

Server Crash

Alternative 1: at-least-once semantics

▪ The client’s communication module sends repeated requests
and waits until the server reboots or it is rebound to a new machine;
when it finally receives a reply, it forwards it to the client.

▪ When the client got an answer, the RMI has been carried out at least one
time, but possibly more.

Alternative 2: at-most-once semantics

▪ The client’s communication module gives up and immediately reports the
failure to the client (e.g., by raising an exception).

▪ If the client got an answer, the RMI has been executed exactly once.

▪ If the client got a failure message, the RMI has been carried out at most
one time, but possibly not at all.

Alternative 3: exactly-once semantics

▪ This is what we would like to have (and what we could achieve for lost
messages): the RMI has been carried out exactly one time.

▪ However, this cannot be guaranteed, in general, for server crashes.

23

Client Crash

The client sends a request to a server

and crashes before the server replies.

▪ The computation which is active in the server becomes an

orphan - a computation nobody is waiting for.

Problems:

▪ waste of server CPU time

▪ locked resources (files, peripherals, etc.)

▪ if the client reboots and repeats the RMI, confusion can be

created.

The solution is based on identifying and killing the orphans.

24

Summary - RMI Semantics and Failures

▪ If the problem of errors is ignored,

maybe-semantics is achieved for RMI:

▪ The client, in general, does not know if the remote method has

been executed once, several times, or not at all.

▪ If server crashes can be excluded,

exactly-once semantics is possible to achieve by

resending requests, filtering out duplicates, and using history.

▪ If server crashes with loss of memory are considered,

only at-least-once and at-most-once semantics are achievable

in the best case.

25

Summary - RMI Semantics and Failures

In practical applications, servers can survive crashes without loss of
memory.

▪ Transaction-based sophisticated commitment protocols are
implemented in distributed database systems to achieve this goal.

▪ In such systems, history can be used
and duplicates can be filtered out after restart of the server:

The client repeats sending requests without being in danger
operations to be executed more than once:

– If no answer is received after a certain amount of tries,
the client is notified, so it knows that the method has been
executed at most once or not at all.

– If an answer is received, it is forwarded to the client, which
knows that the method has been executed exactly one time.

RMI implementation and error handling differs between systems.
Sometimes several semantics are implemented, among which the user is
allowed to select.

26

Direct vs. Indirect Communication

▪ The communication primitives studied so far are based on

direct coupling between sender and receiver

▪ the sender has a reference/pointer to the receiver

and specifies it as an argument of the communication primitive.

▪ The sender writes something like:

…

send (request) to server_reference;

…

→ Very Rigid!

27

Direct vs. Indirect Communication

An alternative: Indirect communication

▪ No direct coupling between sender and receiver(s).

▪ Communication is performed via an intermediary.

☺ Space decoupling:

sender does not know the identity of receiver(s).

☺ Time decoupling:

sender and receiver(s) have independent lifetimes:

they do not need to exist at the same time.

We look at two examples:

1. Group communication

2. Publish-subscribe systems

28

Group Communication

▪ The assumption with client-server communication and RMI
(RPC) is that two parties are involved: the client and the server.

▪ Sometimes communication involves multiple processes,
not only two.

▪ A (simple) solution is to perform separate message passing
operations or RMIs to each receiver.

▪ With group communication,
a message can be sent to a group
and then it is delivered to all members
of the group

→ multiple receivers in one operation.

29

Group Communication

Why do we need it?

▪ Special applications: interest-groups, mail-lists, etc.

▪ Fault tolerance based on replication:

▪ A request is sent to several servers which all execute the

same operation (if one fails, the client still will be served).

▪ Locating a service or object in a distributed system:

▪ The client sends a message to all machines, but only the

one (or those) which holds the server/object responds.

▪ Replicated data (for reliability or performance):

▪ whenever the data changes, the new value has to be sent

to all processes managing replicas.

30

Group Communication

Group membership management:

▪ maintains the view of group membership,
considering members joining, leaving, or failing.

Services provided by group membership management:

▪ Group membership changes:

▪ create/destroy process groups;

▪ add/withdraw processes to/from group.

▪ Failure detection:

▪ Detects processes that crash or become unavailable (due to e.g.
communication failure);

▪ Excludes processes from membership if crashed or unavailable.

▪ Notification:

▪ Notifies members of events, e.g., processes joining/leaving group.

▪ Group address expansion:

▪ Processes sending to a group specify the group identifier;

▪ address expansion provides the actual addresses for the multicast
operation delivering the message to each group members.

31

Group Communication

Essential features:

▪ Atomicity (all-or-nothing):

▪ when a message is sent to a group, it will either arrive correctly at all
members of the group or at none of them.

▪ Ordering

▪ FIFO-ordering: Messages originating from a given sender are delivered
in the order they have been sent, to all members of the group.

▪ Total-ordering: When several messages, from different senders, are sent
to a group, the messages reach all the members of the group in the same
order.

32

Publish-Subscribe Systems

The general objective of publish-subscribe systems is to let
information propagate from publishers to interested subscribers, in
an anonymous, decoupled fashion.

▪ Publishers publish events.

▪ Subscribers subscribe to and receive the events they are interested in.

Subscribers are not directly targeted from publishers but indirectly via
the notification service →

▪ Subscribers express their interest
by issuing subscriptions for specific notifications,
independently from the publishers that produces them;

▪ they are asynchronously notified for all notifications,
submitted by any publisher, that match their subscription.

A generalization of the Observer design pattern in software architecture,
where the event notifications are callbacks.

33

Publish-Subscribe Systems:
Notification Service

Notification Service: is a propagation mechanism that acts as a logical
intermediary (“broker”) between publishers and subscribers,
to avoid each publisher to have to know all the subscriptions for each
possible subscriber.

▪ Both publishers and subscribers communicate only with a single entity, the
notification service, which

▪ stores the subscriptions associated with each subscriber;

▪ receives all the notifications from publishers;

▪ dispatches the notifications to the correct subscribers.

34

Publish-Subscribe Systems:
Notification Service

A subscription is respectively installed and removed on the notification

service as result of subscriber processes executing:

▪ subscribe()

▪ unsubscribe()

35

Publish-Subscribe Systems

A publisher submits a piece of information
by executing the publish() operation on the notification service.

The notification service dispatches a piece of information to a subscriber
by executing the notify() on it.

▪ A publisher produces an event (publication),
while the notification service issues the corresponding notification on
interested subscribers.

36

Publish-Subscribe Systems

▪ Example: Stock trading system,

 information propagation

S1

1. S1 has subscribed to ’IBM’, with a filter indicating that it should be

notified only if the stock increases by at least 25;

2. S2 and S3 have subscribed to ’GM’ and ’IBM’ respectively, without filter.

S2

S3

3. P1 is publishing the new value of ’IBM’. Who is notified?

P1
publish(’IBM’, 95)

4. S1 is not notified because its filter is not satisfied;

 S2 is not notified because it’s not interested in ’IBM’;

 S3 is notified.

37

Publish-Subscribe Systems

One of the main problems with publish-subscribe systems is to

achieve scalability of the notification service.

▪ Centralized implementations:

▪ are the simplest, however, scalability is limited by the processing

power of the machine that hosts the service.

▪ Distributed implementations:

▪ The notification service is realised as a network of distributed

processes, called brokers;

the brokers interact among themselves with the common aim

of dispatching notifications to all interested subscribers.

▪ Such a solution is scalable, but more challenging to implement

it requires complex protocols for the coordination of the

various brokers and the diffusion of the information.

38

Publish-Subscribe Systems

Example: MQTT (https://mqtt.org)

▪ MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT).

▪ Designed as lightweight publish/subscribe messaging transport for connecting
remote devices with a small code footprint and minimal network bandwidth.

▪ Client-server protocol (MQTT broker servers act as notification service)

▪ Runs over TCP/IP, or over other network protocols that provide ordered,
lossless, bi-directional connections.

▪ Agnostic to the content of the payload

▪ Small transport overhead

▪ Protocol exchanges minimized to reduce network traffic

▪ Mechanism to notify interested parties when an abnormal disconnection occurs

▪ Three qualities of service for message delivery:

▪ "At most once“

▪ "At least once"

▪ "Exactly once“

▪ Used in wide variety of industries: automotive, manufacturing, telecom, etc.

▪ Originally developed at IBM, specification opened. Current version 5.0 (2019)

▪ Open implementation e.g. in Eclipse Mosquitto https://mosquitto.org/

39

Acknowledgments

▪ Most of the slide contents is based on a previous version

by Petru Eles, IDA, Linköping University.

	Slide 1: TDDD25 Distributed Systems Communication in Distributed Systems
	Slide 2: Agenda
	Slide 3: Communication Models and their Layered Implementation
	Slide 4: Network Protocol
	Slide 5: TCP Network Protocol
	Slide 6: UDP Network Protocol
	Slide 8: Request and Reply Primitives
	Slide 9: Request-Reply Primitives in the Client-Server Model
	Slide 10: Remote Method Invocation (RMI) and Remote Procedure Call (RPC)
	Slide 11: Remote Method Invocation
	Slide 12: Implementation of RMI
	Slide 13: Implementation of RMI
	Slide 14: Implementation of RMI
	Slide 15: The life of a RMI communication
	Slide 16: Remote Procedure Call
	Slide 17: RMI Semantics and Failures
	Slide 18: Lost Request Messages
	Slide 19: Lost Reply Message
	Slide 20: Conclusion with Lost Messages
	Slide 21: Server Crash
	Slide 22: Server Crash
	Slide 23: Client Crash
	Slide 24: Summary - RMI Semantics and Failures
	Slide 25: Summary - RMI Semantics and Failures
	Slide 26: Direct vs. Indirect Communication
	Slide 27: Direct vs. Indirect Communication
	Slide 28: Group Communication
	Slide 29: Group Communication
	Slide 30: Group Communication
	Slide 31: Group Communication
	Slide 32: Publish-Subscribe Systems
	Slide 33: Publish-Subscribe Systems: Notification Service
	Slide 34: Publish-Subscribe Systems: Notification Service
	Slide 35: Publish-Subscribe Systems
	Slide 36: Publish-Subscribe Systems
	Slide 37: Publish-Subscribe Systems
	Slide 38: Publish-Subscribe Systems
	Slide 39: Acknowledgments

