
TDDD25

Distributed Systems

Fundamentals

of Distributed Systems

Christoph Kessler

IDA
Linköping University

Sweden

2

Agenda

1. What is a Distributed System?

2. Examples of Distributed Systems

3. Advantages and Disadvantages

4. Design Issues with Distributed Systems

5. Course Topics

3

What is a Distributed System?

▪ A distributed system is a collection of autonomous computers

linked by a computer network that appear to the users of the

system as a single computer.

Some comments:

▪ System architecture: The machines are autonomous; this means

they are computers which, in principle, could work independently.

▪ The user’s perception: the distributed system is perceived as a

single system solving a certain problem (even though, in reality,

we have several computers placed in different locations).

▪ By running a distributed system software, the computers are

enabled to:

▪ coordinate their activities

▪ share resources: hardware, software, data.

4

Examples of Distributed Systems (1)

Personal workstations + servers not assigned to specific users.

▪ Single file system, with all files accessible from all machines

in the same way and using the same path name.

▪ For a certain command, the system can look for the best place

(workstation) to execute it.

Network of Workstations

5

Examples of Distributed Systems (2)

Automated banking

system

(with teller machines,

 client devices)

▪ Primary requirements:
security and reliability

▪ Consistency of

replicated data

▪ Concurrent transactions

(operations which involve

accounts in different banks,

simultaneous access from

several users, etc.)

▪ Fault tolerance

6

Examples of Distributed Systems (3)

The Cloud and IoT

▪ Computing as a utility

(service)

▪ Application

▪ Storage

▪ Computation

▪ Platform / Infrastructure

▪ Pay on per-usage basis

▪ Main concerns:

▪ Scaling

▪ Performance

▪ Security / Privacy

▪ Reliability

7

Examples of Distributed Systems (4)

Automotive system

▪ A distributed,

embedded,

real-time system

X-by-wire

Anti-lock

braking

Adaptive

cruise

control

Engine control Throttle control

E

ECU

TDDB63 – Operating System Concepts – A. Bednarski 1.8

A modern high-end car

has >100 ECUs

8

Examples of Distributed Systems (5)

Distributed Real-Time Systems

▪ Synchronization of physical clocks

▪ Scheduling with hard time constraints

▪ Real-time communication

▪ Fault tolerance

TDDB63 – Operating System Concepts – A. Bednarski 1.8

9

Why do we need them?

Advantages of Distributed Systems

▪ Performance

▪ Very often, a collection of computers can provide higher performance
(and better price/performance ratio) than a centralized computer.

 E.g., use computers with specialized hardware for faster computing of some tasks.

 E.g., run computations closer to where the input data is generated / stored

▪ Distribution

▪ Many applications involve, by their nature, spatially separated machines
(banking, commercial, automotive system).

▪ Reliability (fault tolerance)

▪ If some machine crashes, the system can survive.

▪ Incremental growth (scaling)

▪ As requirements on processing power grow,
new machines can be added incrementally.

▪ Sharing of data/resources

▪ Shared data is essential to many applications (e.g., banking,
computer-supported cooperative work, reservation systems)

▪ Other resources can be also shared (e.g., expensive printers).

▪ Communication

▪ facilitates human-to-human communication.

10

Disadvantages of Distributed Systems

▪ Difficulties of developing distributed software

▪ How should operating systems, programming languages
and applications look like?

▪ Networking problems

▪ several problems are created by the network infrastructure,
which have to be dealt with:

Loss of messages

Overloading

 ...

▪ Security problems

▪ Sharing generates the problem of data security.

11

Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security

12

Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security

13

Transparency

▪ How to achieve the single-system view?

▪ How to create the illusion for the user

that the collection of machines is a "simple" computer?

14

Transparency (1)

▪ Access transparency

▪ Local and remote resources are accessed using identical
operations.

▪ Location transparency

▪ Users cannot tell where hardware and software resources
(CPUs, files, databases) are located

The name of the resource should not encode the location of
the resource.

▪ Migration (mobility) transparency

▪ Resources should be free to move from one location to another
without having their names changed.

▪ Replication transparency

▪ The system is free to make additional copies of files and other
resources (for purpose of performance and/or reliability), without
the users noticing.

15

Transparency (2)

▪ Concurrency transparency

▪ The users will not notice the existence of other users in the

system (even if they access the same resources).

▪ Failure transparency

▪ Applications should be able to complete their task despite

failures occurring in certain components of the system.

▪ Performance transparency

▪ Load variation should not lead to performance degradation.

▪ This could be achieved by automatic reconfiguration as

response to changes of the load; it is difficult to achieve.

16

Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security

17

Communication

Components of a distributed system must communicate in order to interact.

This implies support at two levels:

▪ Networking infrastructure

▪ Interconnections and network software

▪ Appropriate communication primitives and models

▪ Communication primitives

send

 receive

 remote procedure call (RPC)

▪ Communication models

client-server communication

– implies a message exchange between two processes:
the process that requests a service and the one that provides it;

group multicast

– the target of a message is a set of processes, which are
members of a given group.

Message passing

18

Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security

19

Performance and Scalability

Several factors influence the performance of a distributed system:

▪ The performance of involved individual computers
(e.g., workstations, servers).

▪ The speed of the communication infrastructure.

▪ Extent to which reliability (fault tolerance) is provided

▪ Replication and preservation of coherence imply large overheads.

▪ Flexibility in workload allocation

▪ For example, idle processors (workstations) could be allocated
automatically to a user’s task.

Scalability

▪ The system should remain efficient even with a significant increase in the
number of users and resources connected:

▪ cost of adding resources should be reasonable;

▪ performance loss with increased number of users and resources
should be controlled;

▪ software resources should not run out
(e.g. number of bits allocated to addresses,
 number of entries in tables, etc.)

20

Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security

21

Heterogeneity

Distributed applications are typically heterogeneous:

▪ Different hardware

▪ mainframes, workstations, PCs, servers, mobile devices …

▪ CPU types, accelerators, memory hierarchies …

▪ Different system software

▪ UNIX/Linux, MS Windows, IBM OS/2, …, Android/iOS/…,
Real-time OSs, …, file systems, executable formats, etc.;

▪ Unconventional devices

▪ teller machines, telephone switches, robots, cars,
manufacturing systems, etc.;

▪ Diverse networks and protocols

▪ Ethernet, FDDI, ATM, TCP/IP, Novell Netware, Infiniband, etc.

The solution:

▪ Middleware, an additional software layer to mask heterogeneity

22

Openness

An important feature of distributed systems is
openness and flexibility:

▪ Every service is equally accessible to every client (local or remote).

▪ It is easy to implement, install and debug new services.

▪ Users can write and install their own services.

▪ Portability of applications and services.

Key aspect of openness:

▪ Standard interfaces and protocols

▪ e.g., XML, Internet protocols,
HTTP, etc.

▪ Support of heterogeneity

▪ by adequate middleware,
like CORBA, MPI, JVM, ...

▪ Layer-based software architecture:

▪ Platforms could be stacked

Hardware:

Computer and Network

Operating System

Middleware

(Abstract interface,

adaptation layer)

Native

platform

Abstract

platform

Applications

and Services

23

Openness

▪ Middleware

(abstract platform interface and its implementation(s))

▪ creates a portable platform for programming and execution

atop a distributed system with its heterogeneous platforms

Hardware 2:

Computer and Network

Operating System 2

Middleware

(Abstract interface,

adaptation layer)

Applications

and Services

Hardware 1:

Computer and Network

Operating System 1

Middleware

(Abstract interface,

adaptation layer)

Applications

and Services

Node 1 Node 2

Platform 1 Platform 2

NETWORK

Abstract platform

24

Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security

25

Reliability and Fault Tolerance

One of the main goals of building distributed systems is
improved reliability.

Availability: If machines go down, the system should still work with
the reduced amount of resources.

▪ There should be a very small number of critical resources
(single points of failure);

▪ critical resources: resources which have to be up
in order for the distributed system to work.

▪ Key pieces of hardware and software (critical resources)
should be replicated

▪ if one of them fails, another one takes up - redundancy.

▪ Data on the system must not be lost, and copies stored redundantly
on different servers must be kept consistent.

▪ The more copies are kept, the better the availability,
but keeping consistency becomes more difficult.

26

Reliability and Fault Tolerance

▪ Reliable systems need to have a high degree of availability;

in order to achieve this, they need to be fault tolerant.

▪ Fault tolerance:

the system has to detect faults and act in a reasonable way:

▪ mask the fault: continue to work with possibly reduced

performance but without loss of data/information.

▪ fail gracefully: react to the fault in a predictable way and

possibly stop functionality for a short period, but without

loss of data/information.

27

Security

Security of information resources implies:

1. Confidentiality

Protection against disclosure to unauthorised person

2. Integrity

Protection against alteration and corruption

3. Availability

Keep the resource accessible

The appropriate use of resources by different users
needs to be guaranteed!

Distributed systems allow communication

between programs/users/resources

on different computers.

Security risks associated with free access.

28

Course Topics
at a Glance

▪ Basics

▪ Introduction 

▪ Models of Distributed Systems

▪ Communication in Distributed Systems

▪ Middleware

▪ Distributed Heterogeneous Applications and CORBA

▪ Peer-to-Peer Systems

▪ Theoretical Aspects and Distributed Algorithms

▪ Time and State in Distributed Systems

▪ Distributed Mutual Exclusion

▪ Election and Agreement

▪ Distributed Data and Fault Tolerance

▪ Replication

▪ Recovery and Fault Tolerance

▪ Distributed Real-Time Systems

29

Course Topics (1):

Basics, Middleware

▪ Models of distributed systems

▪ Communication in Distributed Systems

▪ Message passing and the client/server model

▪ Remote Procedure Call

▪ Group Communication

▪ Publish-Subscribe Systems

▪ Distributed Heterogeneous Applications and CORBA

▪ Heterogeneity in distributed systems

▪ Middleware

▪ Objects in distributed systems

▪ The CORBA approach

▪ Peer-to-peer systems

▪ Basic design issues

▪ The Napster file sharing system

▪ BitTorrent

30

Course Topics (2):

Theory

▪ Time and State in Distributed Systems

▪ Time in distributed systems

▪ Logical clocks and Vector clocks

▪ Causal ordering of messages

▪ Global states and state recording

▪ Distributed Mutual Exclusion

▪ Mutual exclusion in distributes systems

▪ Non-token-based algorithms

▪ Token based algorithms

▪ Distributed elections

31

Course Topics (3):

Distributed Data and Fault Tolerance

▪ Replication

▪ Motivation for replication

▪ Consistency and ordering

▪ Total and causal ordering

▪ Update protocols and voting

▪ Recovery and Fault Tolerance

▪ Transaction recovery

▪ Checkpointing and recovery

▪ Fault tolerance in distributed systems

▪ Hardware and software redundancy

▪ Byzantine agreement

32

Course Topics (4):

Distributed Real-Time Systems

▪ Physical Clocks and Clock Synchronization

▪ Real-Time Scheduling

▪ Real-Time Communication

33

Acknowledgments

▪ Most of the slide contents is based on a previous version

by Petru Eles, IDA, Linköping University.

	Slide 1: TDDD25 Distributed Systems Fundamentals of Distributed Systems
	Slide 2: Agenda
	Slide 3: What is a Distributed System?
	Slide 4: Examples of Distributed Systems (1)
	Slide 5: Examples of Distributed Systems (2)
	Slide 6: Examples of Distributed Systems (3)
	Slide 7: Examples of Distributed Systems (4)
	Slide 8: Examples of Distributed Systems (5)
	Slide 9: Why do we need them? Advantages of Distributed Systems
	Slide 10: Disadvantages of Distributed Systems
	Slide 11: Design Issues with Distributed Systems
	Slide 12: Design Issues with Distributed Systems
	Slide 13: Transparency
	Slide 14: Transparency (1)
	Slide 15: Transparency (2)
	Slide 16: Design Issues with Distributed Systems
	Slide 17: Communication
	Slide 18: Design Issues with Distributed Systems
	Slide 19: Performance and Scalability
	Slide 20: Design Issues with Distributed Systems
	Slide 21: Heterogeneity
	Slide 22: Openness
	Slide 23: Openness
	Slide 24: Design Issues with Distributed Systems
	Slide 25: Reliability and Fault Tolerance
	Slide 26: Reliability and Fault Tolerance
	Slide 27: Security
	Slide 28: Course Topics at a Glance
	Slide 29: Course Topics (1): Basics, Middleware
	Slide 30: Course Topics (2): Theory
	Slide 31: Course Topics (3): Distributed Data and Fault Tolerance
	Slide 32: Course Topics (4): Distributed Real-Time Systems
	Slide 33: Acknowledgments

