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What is a Distributed System?

▪ A distributed system is a collection of autonomous computers 

linked by a computer network that appear to the users of the 

system as a single computer.

Some comments:

▪ System architecture:  The machines are autonomous;  this means 

they are computers which, in principle, could work independently.

▪ The user’s perception:  the distributed system is perceived as a 

single system solving a certain problem  (even though, in reality, 

we have several computers placed in different locations). 

▪ By running a distributed system software, the computers are 

enabled to:

▪ coordinate their activities

▪ share resources: hardware, software, data.
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Examples of Distributed Systems (1)

Personal workstations + servers not assigned to specific users.

▪ Single file system, with all files accessible from all machines 

in the same way and using the same path name.

▪ For a certain command, the system can look for the best place 

(workstation) to execute it. 

Network of Workstations
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Examples of Distributed Systems (2)

Automated banking 

system 

(with teller machines,

 client devices)
 

▪ Primary requirements:
security and reliability  

▪ Consistency of 

replicated data

▪ Concurrent transactions 

(operations which involve 

accounts in different banks, 

simultaneous access from 

several users, etc.)

▪ Fault tolerance
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Examples of Distributed Systems (3)

The Cloud and IoT

▪ Computing as a utility

(service)

▪ Application

▪ Storage

▪ Computation 

▪ Platform / Infrastructure

▪ Pay on per-usage basis

▪ Main concerns: 

▪ Scaling

▪ Performance

▪ Security / Privacy

▪ Reliability
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Examples of Distributed Systems (4)

Automotive system

▪ A distributed,

embedded, 

real-time system

X-by-wire

Anti-lock

braking

Adaptive

cruise

control

Engine control Throttle control

E

ECU

TDDB63 – Operating System Concepts – A. Bednarski 1.8

A modern high-end car 

has >100 ECUs
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Examples of Distributed Systems (5)

Distributed Real-Time Systems

▪ Synchronization of physical clocks

▪ Scheduling with hard time constraints

▪ Real-time communication

▪ Fault tolerance

TDDB63 – Operating System Concepts – A. Bednarski 1.8
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Why do we need them?

Advantages of Distributed Systems

▪ Performance  

▪ Very often, a collection of computers can provide higher performance 
(and better price/performance ratio) than a centralized computer.

 E.g., use computers with specialized hardware for faster computing of some tasks.

 E.g., run computations closer to where the input data is generated / stored

▪ Distribution

▪ Many applications involve, by their nature, spatially separated machines 
(banking, commercial, automotive system).

▪ Reliability (fault tolerance)

▪ If some machine crashes, the system can survive.

▪ Incremental growth (scaling)

▪ As requirements on processing power grow, 
new machines can be added incrementally.

▪ Sharing of data/resources

▪ Shared data is essential to many applications (e.g., banking, 
computer-supported cooperative work, reservation systems)

▪ Other resources can be also shared (e.g., expensive printers).

▪ Communication

▪ facilitates human-to-human communication.
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Disadvantages of Distributed Systems

▪ Difficulties of developing distributed software

▪ How should operating systems, programming languages 
and applications look like?

▪ Networking problems

▪ several problems are created by the network infrastructure, 
which have to be dealt with: 

Loss of messages

Overloading

 ...

▪ Security problems

▪ Sharing generates the problem of data security.
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Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of 

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security
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Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of 

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security
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Transparency

▪ How to achieve the single-system view?

▪ How to create the illusion for the user  

that the collection of machines is a "simple" computer?
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Transparency  (1)

▪ Access transparency

▪ Local and remote resources are accessed using identical 
operations.

▪ Location transparency

▪ Users cannot tell where hardware and software resources 
(CPUs, files, databases) are located

The name of the resource should not encode the location of 
the resource.

▪ Migration (mobility) transparency

▪ Resources should be free to move from one location to another 
without having their names changed.

▪ Replication transparency

▪ The system is free to make additional copies of files and other 
resources (for purpose of performance and/or reliability), without 
the users noticing.
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Transparency  (2)

▪ Concurrency transparency

▪ The users will not notice the existence of other users in the 

system (even if they access the same resources).
 

▪ Failure transparency

▪ Applications should be able to complete their task despite 

failures occurring in certain components of the system.
 

▪ Performance transparency

▪ Load variation should not lead to performance degradation.

▪ This could be achieved by automatic reconfiguration as 

response to changes of the load; it is difficult to achieve.
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Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of 

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security
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Communication

Components of a distributed system must communicate in order to interact. 
 

This implies support at two levels:
 

▪ Networking infrastructure 

▪ Interconnections and network software
 

▪ Appropriate communication primitives and models

▪ Communication primitives

send

 receive

 remote procedure call (RPC)

▪ Communication models

client-server communication

– implies a message exchange between two processes: 
the process that requests a service and the one that provides it;

group multicast

– the target of a message is a set of processes, which are 
members of a given group.

Message passing
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Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of 

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security
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Performance and Scalability

Several factors influence the performance of a distributed system:

▪ The performance of involved individual computers 
(e.g., workstations, servers).

▪ The speed of the communication infrastructure.

▪ Extent to which reliability (fault tolerance) is provided 

▪ Replication and preservation of coherence imply large overheads.

▪ Flexibility in workload allocation

▪ For example, idle processors (workstations) could be allocated 
automatically to a user’s task.
 

Scalability

▪ The system should remain efficient even with a significant increase in the 
number of users and resources connected:

▪ cost of adding resources should be reasonable;

▪ performance loss with increased number of users and resources 
should be controlled;

▪ software resources should not run out 
(e.g. number of bits allocated to addresses,
        number of entries in tables, etc.)
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Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of 

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security
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Heterogeneity

Distributed applications are typically heterogeneous:

▪ Different hardware

▪ mainframes, workstations, PCs, servers, mobile devices …

▪ CPU types, accelerators, memory hierarchies …

▪ Different system software

▪ UNIX/Linux, MS Windows, IBM OS/2, …, Android/iOS/…,
Real-time OSs, …,  file systems,  executable formats,  etc.;

▪ Unconventional devices

▪ teller machines, telephone switches, robots, cars, 
manufacturing systems, etc.;

▪ Diverse networks and protocols

▪ Ethernet, FDDI, ATM, TCP/IP, Novell Netware, Infiniband, etc.

The solution:

▪ Middleware, an additional software layer to mask heterogeneity
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Openness

An important feature of distributed systems is 
openness and flexibility:

▪ Every service is equally accessible to every client (local or remote).

▪ It is easy to implement, install and debug new services.

▪ Users can write and install their own services.

▪ Portability of applications and services.

Key aspect of openness:

▪ Standard interfaces and protocols 

▪ e.g., XML, Internet protocols, 
HTTP, etc.

▪ Support of heterogeneity 

▪ by adequate middleware, 
like CORBA, MPI, JVM, ...

▪ Layer-based software architecture:

▪ Platforms could be stacked

Hardware:

Computer and Network

Operating System

Middleware

(Abstract interface,

adaptation layer)

Native   

platform 

Abstract     

platform     

Applications 

and Services
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Openness

▪ Middleware

(abstract platform interface and its implementation(s))

▪ creates a portable platform for programming and execution

atop a distributed system with its heterogeneous platforms

Hardware 2:

Computer and Network

Operating System 2

Middleware

(Abstract interface,

adaptation layer)

Applications 

and Services

Hardware 1:

Computer and Network

Operating System 1

Middleware

(Abstract interface,

adaptation layer)

Applications 

and Services

Node 1 Node 2

Platform 1  Platform 2

NETWORK

Abstract platform
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Design Issues with Distributed Systems

Issues that arise specifically from the distributed nature of 

the application

▪ Transparency

▪ Communication

▪ Performance and scalability

▪ Heterogeneity

▪ Openness

▪ Reliability and fault tolerance

▪ Security
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Reliability and Fault Tolerance

One of the main goals of building distributed systems is 
improved reliability.

Availability: If machines go down, the system should still work with 
the reduced amount of resources.

▪ There should be a very small number of critical resources 
(single points of failure);

▪ critical resources: resources which have to be up 
in order for the distributed system to work.

▪ Key pieces of hardware and software (critical resources) 
should be replicated 

▪ if one of them fails, another one takes up - redundancy.

▪ Data on the system must not be lost, and copies stored redundantly 
on different servers must be kept consistent.

▪ The more copies are kept, the better the availability, 
but keeping consistency becomes more difficult.



26

Reliability and Fault Tolerance

▪ Reliable systems need to have a high degree of availability; 

in order to achieve this, they need to be fault tolerant.

▪ Fault tolerance: 

the system has to detect faults and act in a reasonable way:

▪ mask the fault: continue to work with possibly reduced 

performance but without loss of data/information.

▪ fail gracefully: react to the fault in a predictable way and 

possibly stop functionality for a short period, but without 

loss of data/information.
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Security

Security of information resources implies:

1. Confidentiality

Protection against disclosure to unauthorised person

2. Integrity

Protection against alteration and corruption

3. Availability

Keep the resource accessible

The appropriate use of resources by different users 
needs to be guaranteed!

Distributed systems allow communication 

between programs/users/resources 

on different computers.

Security risks associated with free access.
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Course Topics 
at a Glance

▪ Basics

▪ Introduction  

▪ Models of Distributed Systems

▪ Communication in Distributed Systems
 

▪ Middleware

▪ Distributed Heterogeneous Applications and CORBA

▪ Peer-to-Peer Systems
 

▪ Theoretical Aspects and Distributed Algorithms

▪ Time and State in Distributed Systems

▪ Distributed Mutual Exclusion

▪ Election and Agreement
 

▪ Distributed Data and Fault Tolerance

▪ Replication

▪ Recovery and Fault Tolerance
 

▪ Distributed Real-Time Systems
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Course Topics (1):

Basics,  Middleware

▪ Models of distributed systems

▪ Communication in Distributed Systems

▪ Message passing and the client/server model

▪ Remote Procedure Call

▪ Group Communication

▪ Publish-Subscribe Systems
 

▪ Distributed Heterogeneous Applications and CORBA

▪ Heterogeneity in distributed systems

▪ Middleware

▪ Objects in distributed systems

▪ The CORBA approach

▪ Peer-to-peer systems

▪ Basic design issues

▪ The Napster file sharing system

▪ BitTorrent
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Course Topics (2):

Theory

▪ Time and State in Distributed Systems

▪ Time in distributed systems

▪ Logical clocks and Vector clocks

▪ Causal ordering of messages

▪ Global states and state recording

▪ Distributed Mutual Exclusion

▪ Mutual exclusion in distributes systems

▪ Non-token-based algorithms

▪ Token based algorithms

▪ Distributed elections
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Course Topics (3):

Distributed Data and Fault Tolerance

▪ Replication

▪ Motivation for replication

▪ Consistency and ordering

▪ Total and causal ordering

▪ Update protocols and voting
 

▪ Recovery and Fault Tolerance

▪ Transaction recovery

▪ Checkpointing and recovery

▪ Fault tolerance in distributed systems

▪ Hardware and software redundancy

▪ Byzantine agreement
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Course Topics (4):

Distributed Real-Time Systems

▪ Physical Clocks and Clock Synchronization

▪ Real-Time Scheduling

▪ Real-Time Communication
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