
Architectural Risk Analysis of Chromium

Mati Ullah Khan Mansoor Munib

Email: {matul986, manmu259}@student.liu.se

Supervisor: Shanai Ardi, {shaar@ida.liu.se}

Project Report for Information Security Course

Linköpings universitetet, Sweden

Abstract

Conventional risk analysis techniques do not

necessarily cover all security aspects in software. Defects

in a software design cannot be identified by simply looking

for flaws in the code. Therefore, carrying out risk analysis

at architecture level is important. In this project we have

performed architectural risk analysis of Chromium which

is an open source web browser project. The method

followed to carry out the analysis is a best practice

approach described by Gary McGraw in his book

Software Security: Building Security In.

1. Introduction

Risk analysis is the process of identifying and assessing

risks in a software project.

“Traditional risk analysis output is difficult to apply

directly to modern software design” [1] and by applying

these techniques to complex modern software one cannot

identify all vulnerabilities and threats in a software.

“Design flaws account for 50% of security problems” [1].

So to identify and eliminate such design problems we have to

perform risk analysis mechanism at an earlier stage in the

software development life cycle. Risk analysis at such an

early stage can significantly improve the overall security

measure of any software.

Architectural risk analysis process is applied on the

design of software to identify and assess design level flaws

which cannot be found by simply analyzing the code.

In this project we perform Architectural Risk Analysis of

Chromium which is an open-source browser project. The

method we adopt is an architectural risk analysis best

practice described by Gary McGraw in “Software Security:

Building Security in” [1]. This method requires extensive

knowledge about known attack patterns, vulnerabilities and

security design principles. The process consists of three basic

steps: attack resistance analysis, ambiguity analysis and

weakness analysis.

We try to identify security flaws in the software design

using the above mentioned steps. Predefined attack pattern

and vulnerabilities are examined in attack resistance

analysis. Ambiguity analysis focuses on identifying new

risks by analysis of the software design. In weakness

analysis the weakness in security due to dependence on

external software is analyzed.

As the result of architectural analysis we will identify

design level security flaws in Chromium.

2. Chromium Overview

2.1 Introduction

Chromium is an open-source browser project. Google

chrome is built with open source code for chromium. We

have worked with chromium version 0.2.149.27.

2.2 Architecture Overview

Developing a high level architecture view of target

application is a prerequisite for performing the actual

steps in risk analysis [1]. Building such an overview is

very important because this high level description is used

in the remaining steps of the analysis. The idea is to see

the complete picture so that no details are missed during

the analysis.

Figure 1 shows a high level overview of chromium

which highlights all the important components of the

software and the flow of information is explained below.

Chromium uses a separate process for each tab opened

in the browser called renderer [3]. This approach is used

to keep the whole application safe in case of a bug in any

tab. Each renderer has a global render process which is

responsible for communication with the browser process.

Each RenderView corresponds to a single tab of content.

It handles all navigation-related commands to and from

the browser process.

Figure 1 Architecture Diagram [2]

The main process in chromium design is “Browser”

which manages all renderer processes. All network

communication is handled by the main browser process.

The browser process maintains a separate Render Process

host responsible for communication with a renderer

process. The RenderProcessHost maintains a

RenderViewHost for each view in the renderer.

Communication from the browser to a specific tab of

content is done through these RenderViewHost objects,

which know how to send messages through their

RenderProcessHost to the RenderProcess and on to the

RenderView.

WebKit is an open source web browser engine which

is used to layout web pages. It has a ResourceLoader

which is responsible for fetching data via the WebKit

port. Chromium uses different types, coding styles, and

code layout than the third-party WebKit code. The

WebKit "glue" provides a more convenient embedding

API for WebKit using chromium’s coding conventions

and types.

Chromium is a multi-process architecture so there’s a

lot of inter-process communication involved. It uses

named pipes as main communication mechanism. A

named pipe is assigned for communication between each

renderer and the browser process. The browser process

has two threads and I/O thread and one main thread.

Messages from renderers are received at the I/O thread

and resource request messages are directly forwarded to

resource dispatcher rather than the main thread. [3]

2.3 Displaying a Webpage [3]

When the user types into or accepts an entry in the

URL bar, the navigation controller is instructed to

navigate to the respective URL

The NavigationController forwards the call to browser

process which will create a new RenderViewHost if

necessary, which will cause creation of a RenderView in

the renderer process in case it is the first navigation.

The navigate request is forwarded to

RenderViewHost. The NavigationController stores this

navigation entry, but it is marked as "pending" because it

doesn't know for sure if the transition will take place.

RenderViewHost sends a message via the

RenderProcessHost to the new RenderView in the

renderer process.

When told to navigate, RenderView may navigate, it

might fail, or it may navigate somewhere else instead (for

example, if the user clicks a link). RenderViewHost waits

for a reply from the RenderView.

When the load is "committed" by WebKit (the server

responded and is sending us data), the RenderView sends

this reply, which is handled in RenderViewHost.

The NavigationController is updated with the

information on the load. In the case of a link click, the

browser has never seen this URL before. If the navigation

was browser-initiated, as in the startup case, there may

have been redirects that have changed the URL. The

NavigationController updates its list of navigations to

account for this new information. [3]

3. Attack Resistance Analysis

Attack resistance analysis requires knowledge about

applying known attack patterns and demonstrating the

attacks using exploit graphs. This step in the analysis

aims at applying known attack patterns and

vulnerabilities to the high level overview described in the

previous section. First we identify known vulnerabilities

using knowledge about existing attacks. Then we map

these vulnerabilities to chromium application using attack

patterns. This uncovers any flaws in the architecture.

Finally we demonstrate the possibility of exploitation of

the detected vulnerabilities using exploit graphs.

 An exploit graph enables analysts to gain an overview

about the exact sequence required to carry out an attack

given any vulnerability [1]. It is essentially a flow chart

which describes an attack and includes some basic details

about the attack such as its delivery, access and

actualization.

3.1 Results

Attack pattern is a plan of action for carrying an attack

and is applicable to different software applications in

general. Some example attack patterns are command

delimiters, argument injection, URL encoding etc [4]. In

this step we first gained information about known

vulnerabilities and attack patterns [4]. Then we applied

some selected attack patterns to chromium to identify

risks in the architecture. Finally we developed an

overview of each applicable attack pattern using exploit

graphs to demonstrate the possibility of the attack. The

flaws we have identified are not a complete list of flaws

in the application. Lots of risk analysis work has already

been carried out on Chromium so the flaws mentioned

here have also been discovered by other analysts. But we

show here that these flaws can be efficiently identified by

the risk analysis approach we have adopted. We have

focused on some popular attack patterns to demonstrate

the application of attack resistance analysis process.

Identified flaws in chromium are listed below:

1. Chromium suffers from the famous buffer

overflow vulnerability which is related to memory

usage [5].

We apply the attack pattern: “Overflow

variables” [4] which confirms the flaw. The

vulnerability is identified using the most basic

approach of providing random long inputs to

chromium [4]. When we supply a long title in a

webpage and try to save it the long input title

causes the overflow.

The overflow is caused due to a boundary check

error when a user tries to save a webpage which

has sufficiently long title [5]. An attacker can

exploit this vulnerability and gain control of the

instruction pointer and using it he/she can run any

arbitrary malicious code.

The exploit graph which describes an attack

scenario for this vulnerability is shown in figure

2. The graph shows different steps (circles)

carried out by an attacker from delivering the

attack to the actualization of the attacker’s goals.

To exploit this flaw an attacker may create a

webpage containing harmful code and having a

long title. Then he/she tricks the user into saving

the page to deliver the attack as shown in the

graph. When user tries to save the page overflow

occurs and the attacker gains access to instruction

pointer which enables malicious code execution.

Thus in access stage the attacker gains access to

an object of a protected class. Finally the attack

actualizes when a call to a protected class method

is made. [5]

Figure 2 - Exploit graph for buffer overflow

2. Chromium is also vulnerable to denial of service

attack. The vulnerability is listed on bugtraq [6]

but we have applied the attack pattern “Command

delimiters” [4] which identifies this vulnerability.

In such an attack applications are made to execute

commands which may cause unwanted behavior.

Carriage return is one command delimiter that

often passes through filters [4]. In this case we

can use carriage return which causes memory

exhaustion that leads to Denial of Service.

The vulnerability exists in window.open function,

when input to this function is exploited and

carriage return(\r\n\r\n) is fed as input the browser

generates several new windows causing memory

exhaustion. [6]

The exploit graph in figure 3 gives overview of an

attack scenario for this vulnerability. The attacker

can deliver the attack by overflowing the buffer

and when the malicious code executes it gains

necessary access to invoke the window.open

function with the carriage return delimiter as

inpurt parameter.

Figure 3 - Exploit graph for DoS

4. Ambiguity Analysis

Ambiguity analysis aims at identifying new risks by

uncovering ambiguity and inconsistency in the design.

This step requires knowledge about secure design

principles. Attack resistance analysis only uncovers

known vulnerabilities whereas ambiguity analysis detects

new faults. This process demands creativity and at least

two experienced analysts. Each of the analysts performs

the analysis separately and discusses their understandings

at the end.

4.1 Results

In ambiguity analysis we acquired knowledge about

secure design principles [7]. Then we performed analysis

of the chromium design independently. Finally we

discussed our findings to unify our understandings.

The main idea behind chromium security design is to

separate the renderer process from the main browser

process. The browser process communicates with the

operating system and the renderer process communicates

with the web with restricted privileges. This leaves the

attacker unable to get system level privileges by attacking

the renderer.

However chromium renderer relies heavily on WebKit

for rendering html to display a webpage. WebKit has

many security flaws as we will see in weakness analysis.

The renderer process does not secure these vulnerabilities

in the WebKit which is a violation of the secure design

principle i.e. “secure the weakest link” [7]. This

principle states that the security is a chain and the

software is as secure as the weakest link in the chain

which in this case is the WebKit as we have found out

during the weakness analysis that it has many security

flaws.

Chromium has multiple processes so a lot of inter

process communication is involved. The renderer process

communicates with the browser process using named

pipes. Messages received from the renderer at the

browser process are not properly validated and checked

and this could cause a breach in the renderer sandbox.

The browser process receives messages from the renderer

in the RenderProcessHost. The method

OnMessageRecieved of Listener interface upon receiving

a message from the renderer process simply unpacks the

message. One of the easiest ways to get out of the

sandbox is to take advantage of this insecure message

unpacking. The design principle “defense in depth” [7]

says that defense should be implemented at various levels

so that if one level misses the error next level catches it.

Chromium here depends on the sandbox created around

the renderer but if an attacker gets into the renderer the

message from renderer can carry malicious data to the

browser and the sandbox will be breached.

5. Weakness Analysis

Weakness analysis aims at identifying weaknesses in

design that arise due to assumptions about third party

software. Knowledge about existing flaws in underlying

frame works and other third party software used by the

target application is required to perform weakness

analysis. As shown in figure 4 applications nowadays are

built upon layers of other software like .NET and J2EE

frameworks and use outside libraries like DLLs or

common language libraries. So the vulnerabilities in third

party software affect the security of an application.

Figure 4 - Modern Application Architecture [8]

Weakness analysis requires examining the weak

security provided by the framework and known

vulnerabilities in COTS, network topology, platform,

physical environment, build environment etc [1]. Then

analyze what assumptions the application makes about

these dependencies.

Chromium is a complex application and has various

external dependencies. However, we focus on the

renderer part of the application. Renderer process uses

WebKit, which is an open source web browser engine,

for rendering any HTML or XHTML web page and

communicates with browser for I/O. The impact of the

WebKit flaws on the Renderer process is our main focus.

5.1 Results

In attack resistance analysis we first identified external

software dependencies of chromium. We narrowed our

focus to WebKit, identified existing flaws in WebKit. In

the next step we analyzed what services chromium uses

from the WebKit and what assumptions are made about

WebKit security. Then we analyze the effect of WebKit

security failure on chromium.

WebKit is vulnerable to a cross-site scripting

vulnerability [9]. A remote user can create specially

crafted HTML that, when loaded by the target user will

trigger an invalid conversion in the WebKit code when

rendering frame sets and execute arbitrary code on the

target system. The code will run with the privileges of the

target user. User's cookies can also be accessed by a

remote user, if any, associated with an arbitrary site,

access data recently submitted by the target user via web

form to the site, or take actions on the site acting as the

target user.

An attacker could easily trick users into launching an

executable Java file by combining a flaw in WebKit with

a known Java bug [10]. The problem is that, after a user

double-clicks download at the bottom of the screen, this

application is opened without any warning, which would

allow a malicious hacker to easily execute any Java

program on a user's machine.

Retrieving cookies from the user machine is an

important feature of web application but in the WebKit if

we set the cookie through http response they are either

not stored at all or stored on the client side but not read.

[11]

For writing Cascading Style Sheet (CSS) of a website

we need to add prefix of the vendor in JavaScript.

Following code is used to get the vendor prefix:

function getVendorPrefix()

{

 Var regex = /^(Moz|Webkit|Khtml|O|ms|Icab)(?=[A-Z])/;

 var someScript = document.getElementsByTagName('script')[0];

 for(var prop in someScript.style)

 {

 if(regex.test(prop))

 return prop.match(regex)[0];

 }

 return '';

} [12]

By running above code in WebKit based browsers,

empty string is returned.

Chromium uses browser management services from

the WebKit which include Navigation Services,

Rendering Services, DOM and JavaScript Management

Services.

An exploited cross-site scripting vulnerability can be

used by attackers to bypass access controls such as the

same origin policy. Due to the cross site scripting bug in

WebKit, Chromium allows unauthorized access to user

data.

Carpet bombing vulnerability of WebKit allows any

harmful code to run without notifying the user. Users

who are not yet familiar with Chrome's interface are

convinced to click on download which appear at the

bottom and can be fooled that the download is actually

just part of the web page. When the user clicks the

download this application is opened without any warning

and starts exploiting the resources.

Cookies can be used for many things such as

authenticating logins to Web sites and storing preferences

for the Web sites, and they can be used for tracking

where a user goes, whether within a Web site or between

Web sites. But the bug in WebKit for setting and getting

cookies makes Chromium’s performance poor in

browsing e-commerce application.

6. Risk Impacts and Mitigation suggestion

The risk matrix below ranks identified risks in

chromium into different categories i.e. extreme, high,

medium and low.

 Extreme risk – Immediate

fix required

BO - Buffer Overflow

CB - Carpet Bombing

VP - Vendor Prefix

CM - Cookies Management

XSS - Cross Site Scripting

DOS - Denial of Service

IPC – Inter process

 High risk – Fix required as

soon as possible

 Medium risk – Fix in near

future

 Low risk – Fix if resources

available

 Minor Moderate Major

Likely CM CB,IPC BO

Possible DoS

Rare VP XSS

Figure 5 - Risk Matrix

Damage

The ranking is based on the likeliness of an attack

which depends mainly on ease of carrying out an attack

and estimated damage caused by an attack.

Buffer overflow is easy to exploit and hence has a

high likelihood. In case of this attack the attacker may

run malicious code and can potentially gain complete

control so it is ranked as extreme risk. Therefore, fixing

this problem can reduce the overall risk to the application

significantly.

DoS service attack is difficult to perform as compared

to buffer overflow as it requires some additional

knowledge about getting the command delimiter through

the filter. Hence its probability is in neither rare nor

likely but the damage in case of this attack is serious, so

it is ranked as a high risk and fixing it as soon as possible

is necessary.

Cross site scripting is possible due to a flaw in

WebKit. It is difficult to carry out because attacker must

know how to break the same origin policy of browser but

in case the attacker is successful the attacker can gain

elevated privileges and cause severe damage.

7. Conclusion and Future

Recommendations

Performing risk analysis at an initial stage in the

software development life cycle is very important.

Design level flaws are hard to identify by code review.

By applying this best practice architectural risk analysis

technique we can efficiently identify some design level

security faults in chromium. In the three step process we

identified known vulnerabilities by applying attack

patterns in attack resistance analysis, new vulnerabilities

in design in ambiguity analysis and design flaws due to

dependence on third party software in weakness analysis.

The risks we have identified do not cover all risks

present in chromium; we have focused on specific areas

in the risk analysis process because chromium is a huge

software and extensive knowledge and experience is

required in each step of the analysis. We have focused on

some popular attack patterns in attack resistance analysis

such as buffer overflow, DoS, click jacking. In ambiguity

analysis our focus was few of the security design

principles explained in “Building Secure Software how to

avoid security problems the right way” [7]. In weakness

analysis we focused on weaknesses in a renderer process

due to its dependence on WebKit. We recommend a

complete risk analysis on chromium covering all

components and aspects so that a complete list of design

level risks is formed.

References

[1] Gary McGraw: Software Security: Building Security
in. ISBN 0-321-35670-5

[2] http://dev.chromium.org/developers/design-
documents/multi-process-architecture, 26-03-2009

[3] http://dev.chromium.org
[4] Greg Hoglund, Gary McGraw: Exploiting software

How to break code, ISBN 0-201-78695-8
[5] http://code.google.com/p/chromium/issues/detail?id=

1414
[6] http://seclists.org/bugtraq/2008/Sep/0251.html
[7] John Viega, Gary McGraw: Building Secure Software

how to avoid security problems the right way, ISBN
0-201-72152-X

[8] http://secappdev.org/handouts/2009/softwaresecurityt
ouchpointarchtecturalriskanalysis.pdf

[9] http://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=520052

[10] http://www.readwriteweb.com/archives/security_flaw
_in_google_chrome.php

[11] https://bugs.WebKit.org/show_bug.cgi?id=23520
[12] http://leaverou.me/2009/02/find-the-vendor-prefix-of-

the-current-browser/#more-48

