
The Domain Name System from a security point of view

Simon Boman Patrik Hellström
Email: {simbo105, pathe321}@student.liu.se
Supervisor: David Byers, {davby@ida.liu.se}

Project Report for Information Security Course
Linköpings universitet, Sweden

Abstract
The Domain Name System is used everyday by all the

people surfing the Internet. Most of the people probably
don’t even have an idea that it exists and how important it
is in order to make the Internet fully operational. Among
those people who have heard of the system or even knows
what it is, only a small group probably knows how easy it
is to exploit it. In this paper we bring up the fundamentals
of the domain name system but also what different attacks
that exist towards it such as DNS cache poisoning, some
incidents that have happened in the past and what is being
done in order to make the system more secure, for
example DNSSEC.

1. Introduction
Internet today is very widely spread and used by

millions of people every day. In order to make
access to various hosts easy, the Domain Name
System is used to map a domain name to an IP
address. Today there are over 100 million different
domain names registered in the world [11] and the
numbers are increasing every day. With the
increasing numbers in mind and the fact that DNS
was never developed with consideration of security
makes it a very feasible target for various attacks.

In this paper we will talk about the Domain
Name System from a security perspective and
discuss what weaknesses are there, what are the
consequences of a security breach and what are
being done in order to make DNS more secure are
the main questions this report will focus on.

In chapter two we begin with a brief history of
DNS, then we move on to the technical
specifications and how DNS works. In chapter three
we will bring up some of the possible attacks and in
chapter four a few successfully performed attacks
will be mentioned. In chapter five we move on to the
developments that have been made in order to make
DNS more secure and what further evolvement,
concerning security, DNS will face in a near future.

The last chapter summarize the report and we
discuss our findings of the security of the DNS.

2. The Domain Name System
In this chapter we will talk about the Domain

Name System in general. We will bring up some
history, the protocol and how it works.

2.1 History
When DNS was invented in 1983 the practice of

using a name instead of a numerical address had
actually been in use for decades. It was when
ARPAnet was invented the method was firstly
implemented but not in the form as a distributed
system like the DNS. Back then one file were used.
This file, named HOSTS.TXT, was retrieved around
once a week by every computer from a computer at
the SRI’s Network Information Center. The file
contained all of the currently active mappings
between numerical address and a name. As the
Internet grew a more scalable and dynamic system
was needed and that was the beginning of the
domain name system. [17]

2.2 The DNS protocol
In the Internet, a DNS message is sent either in

UDP datagrams or TCP datagrams, both on server
port 53. In this chapter we mention some details
about what the message contains. All content is
taken from RFC1034[1] and RFC 1035[2].

2.2.1 Message format
The DNS protocol has a standard message format

to send DNS queries and responses. At the top of the
message format it’s a header containing a number of
fixed fields, and four sections which carry query
parameters and resource records.

2.2.1.1 Header
The header section is always present and it in-

cludes fields that specify which of the remaining

sections that are present. It also specifies whether the
message is a query or a response. The first field of
the header is a 16 bit identifier which is generated by
the requesting resolver. A major field in the header
is a four bit field named an OPCODE which divides
different queries. Of 16 in total, one OPCODE is
part of the official protocol (standard query), two are
options (inverse query and status query), one is out
of date, and the rest are unassigned.

2.2.1.2 Question
The question section is used to carry the query

name and other query parameters, like QNAME,
QTYPE and QCLASS. Where the QNAME field has
the domain name represented as a sequence of
labels. The QTYPE specifies the type of the query
and QCLASS specifies the class of the query, for ex-
ample IN for the Internet.

2.2.1.3 Answer
The answer section usually contains records that

directly answer the question of the message, where
several answers are possible. The Answer, Authority
and Additional sections all have the same format
which consists of a domain name, a type, a class, a
TTL (time-to-live), the length of the RDATA and at
least the RDATA field.

2.2.1.4 Authority
The authority section holds the names of the

name servers which are being sent back to the client.
The section can optionally carry the SOA resource
records for the authoritative data in the answer
section.

2.2.1.5 Additional
The additional section contains extra information

that may be of value to the client, for example the IP
address of a name server in the authority section.

2.2.2 Resource records
In the Domain Name Space each node has one or

more resource records, which contain information
about the domain name. A resource record consists
of several types of records. The most common types
of resource records are the A (address) record which
maps a hostname to a 32-bit IPv4 address and the
AAAA record which maps a hostname to a 128-bit
IPv6 address. Further on there are NS, SOA,

CNAME, PTR and MX. The NS (name server)
record maps a domain name to a list of DNS servers
authoritative for that domain. The SOA (start of
authority) record specifies authoritative information
to the DNS server, for example about an Internet
domain. CNAME (canonical name) record is
commonly used when running multiple services
(such as a mail server and web server) from just one
IP address, for instance m1.isp.com and
www.isp.com. Instead of mapping hostname to an
IPv4 address, the PTR (pointer) record maps an IPv4
address to the canonical name for that host. The PTR
uses reverse DNS lookup for that address. MX (mail
exchange) record is used for mail servers as it maps
a domain name to a list of mail exchange servers for
that domain.

2.3 How it works
This part describes how the domain name system

is constructed and how it works in practice. We will
also mention a common configuration and how a
typical DNS-request could be performed.

2.3.1 DNS servers
The domain name system is a hierarchical system

built up by many different DNS servers. Some of
these servers are what is called authoritative DNS
servers which provide the functionality of publishing
information about its domain and all the domains
and name servers beneath it. At the top of the
hierarchy are the root name servers which are used
when a query for a top-level domain name is
performed.

2.3.2 DNS resolvers
A DNS resolver provides the functionality of

looking up resource records information for different
nodes. The resolver has the knowledge of how to
communicate with name servers by sending requests
and passing answers to the requesting instance. In
most cases the resolver has a cache in which it saves
the most recent answers. In this way a lot of time can
be saved by the fact that a common query get its
answer directly from the resolver’s cache and
doesn’t have to be looked up every single time.

2.3.3 Common configuration
In the simplest scenario (which is probably also

the most common one) the user interacts with the

DNS server in an indirect manner; the user uses a
program, for instance a web browser, which sends a
query to the local DNS resolver (implemented by the
operating system) which in turn will check its cache
for a match. If no match can be found the resolver
will send a request to a DNS server (most likely
your ISP´s name server if no other configuration has
been made). The DNS server has a cache as well and
if an answer to the current request can be found in it,
the name server will send an answer to the
requesting resolver which will forward the answer to
the user program. If no matching cache entry can be
found, the DNS server will act as a resolver which
tries to find an answer. If the DNS server doesn’t
have any information in its cache it will do this by
beginning to query the root server about the address
to the authoritative server for the correct top-level
domain (for example .com if a host under a .com
address is to be looked up). It then continues in an
iterative way by asking the “com-server” about the
address to the requested host and so it continues.
When the answer has been successfully obtained the
DNS server pass this on to the local resolver which
forwards it to the user program. [2]

3. DNS attacks
When the domain name system was developed,

security was not the main concern and when looking
at the earliest released RFC:s describing the system
one won’t find much information about the security
of it. When the system began to grow at a rapid
speed it obviously became a tempting target for
attackers. Nowadays the system’s security has
evolved but is still not flawless and the numbers of
unpatched and old version system out on the Internet
is probably huge.

In this chapter we will mention some of the
attacks that have been possible and some that still
are possible to perform to the Domain Name
System.

3.1 DNS forgery
One of the most common attacks on the domain

name system is the one referred to as DNS forgery.
In this attack the attacker might eavesdrop on a
connection and if a DNS request is seen the attacker
sends a forged reply to the client, beating the reply
from the DNS server. Since DNS requests and an-
swers are sent over UDP in an unsigned and un-
encrypted packet, this attack is quite simple to

perform for an attacker who is able to intercept
packets on a shared network. Hence in a wireless
network where all data can be seen by every node
this attack is very straightforward.[3]

3.2 DNS cache poisoning
Another form of DNS forgery is the case when

the attacker is not on the same network as the victim.
In this case the victim’s DNS server has to be
attacked instead. This is done by inserting false data
in the DNS server’s cache so that when the victim
sends a request to the server the forged answer will
be sent back to the client.

3.2.1 Old-school
In the early versions of the DNS software the

additional section of an answer was trusted blindly
and therefore all the data in it would be put in the
DNS cache. This could be used by an attacker by
setting up his own DNS server and in some way
trick a resolver to connect to it. When receiving a
request, an answer with a specially crafted additional
section containing the A records that are to be
poisoned, is sent to the requesting client. In more
recent versions of name server software this has
been fixed and all the data in the additional section
will be validated.

3.2.2 New-school
Despite that the information in the additional

section is validated in modern name servers there is
still one way to perform cache poisoning. The
method is similar to the one with DNS forgery but
with some extra steps.

The attack is performed by sending a request to
the target’s DNS server directly followed by a
forged response. If the server doesn’t already have
the answer in its cache a recursive lookup will be
made. If the attacker’s answer beats the answer from
the recursive lookup it will be cached and the correct
answer from the recursive lookup will be discarded.
All other request to the DNS server querying for this
domain name will now get the attacker’s answer.
There is however one problem with this scenario.

As seen in the previous chapter every DNS
packet has a 16-bit id number which is used in order
to match an answer to the correct request. When the
targeted nameserver performs its recursive lookup
the query packet will get a unique id number and in

order for the attacker to make the targeted name
server accept his answer, he must make sure to get
the very same 16-bit id number or the packet will
not be taken as a correct answer. The simplest way
of getting around this issue is by flooding the name
server with faked answers which all have different id
numbers and hope that one of them is correct (1 out
of 65535). However, this is not a very effective
solution but with the help of a so called birthday
attack, explained in the next section, the odds of
succeeding will increase.

3.2.3 ID/port number prediction
One way of increasing the chance of guessing the

correct id number is by using a so called birthday
attack which has its roots in the birthday paradox.
This says that “in a gathering of 23 persons, it's
likely that 2 of these persons will have the same
birthday date” [12]. This paradox can be used in the
way that if the attacker sends n requests to the
victim’s DNS server and directly after sends n
spoofed answers his chances of success increase
dramatically. In fact if he sends 300 requests and
300 spoofed answers; his chance of success is 50%
[4].

Another way to increase the odds in succeeding
is by making “qualitative” guesses. If the id number
is created by a counter, the attacker could easily find
out the number the counter is at for the moment and
start his guessing in the surrounding of that number.
On the other hand, if a pseudo random number
generator is used to create the id number, phase
space analysis can be used.

This leaves the attacker with one last problem;
the port number. Most of the name servers always
use port 53 to send its requests. If this is the case this
part of the attack becomes very simple. If the port
number on the other hand is chosen by random by
the name server the attack becomes much more
difficult. Also in this case the attacker could resort to
performe a phase space analysis if he knows how the
pseudo random number generator, used by the name
server to create the port number, works. The
birthday attack could also be used.

3.2.4 Phase space analysis
Phase space analysis is a mathematical method

which can be used when trying to predict id and port
numbers. Suppose that the id number is created by a

pseudo random number generator. With the help of
phase space analysis an attacker could find out just
how random these numbers are and he might even
find a pattern in how they are created. This increases
the chance to guess the correct id number drastically.

3.3 DNS cache snooping
The process of DNS cache snooping is when you

determine whether a given resource record is (or is
not) present on a given DNS cache. [5] Today there
are two ways to figure this out, and that is what we
are going to present here.

3.3.1 The Ecological Way
Using iterative queries is the most effective way

to snoop a DNS cache. The first query sets the RD
(recursion desired) bit in the query to zero and asks
the cache for a given resource record of any type. If
the answer is cached the answer will be valid, other-
wise the cache will reply with information from
another server which better can answer our query
better, or more usually, send back the content of the
root.hints file.

3.3.2 The Polluting Way
If you’re not allowed to use non-recursive

queries, you still have some chance to succeed with
DNS cache snooping by using recursive queries. But
there is one major disadvantage with using it; it will
pollute the cache, so if a given record isn’t present in
the cache when you do the attack, it will be there
after the first query has been sent. One way to see if
the attack has been succeeded, is to check the TTL
field of the cached response, if it’s much lower then
the initial set TTL the cache hasn’t been polluted.
Another way to check if the cache has been polluted
is to observe the time that the query takes to process.
If the query time is approximately equal to the round
trip time (RTT) of a packet to the server, then the
answer probably should be in the cache. Otherwise
the cache has been polluted.

The attacker can after the exploit determine
which domains that have recently been resolved via
the attacked name server, and also which hosts that
have been recently visited. So why would an
attacker want to have that information? One example
is that an advertising agency could see which web-
surfing patterns some people has, and then use this
to make pointed publicity to those people. A more

serious purpose is if an attacker was interested in
whether your company utilizes the online services of
a specific financial institution, they would be able to
use this attack to build a statistical model regarding
company usage of earlier mentioned financial
institution. You can also use this information to find
business-to-business partners, external mail servers
and so on.

3.4 Betrayal by trusted server
Another way to do a packet interception attack is

the trusted server who appears to not be so
trustworthy, whether on purpose or by an accident.
A lot of client machines only have a basic
configuration, and use trusted servers to perform all
of their DNS queries. Most commonly the trusted
server is supplied by the user’s ISP and advertised to
the client thorugh DHCP or PPP options.

This problem is specific for frequent travellers
who bring their own computer and expect it to work
wherever they are. These travellers need trustworthy
DNS services without the need to care about who
operates the network which they are connected to, or
what equipment the operators are using.

The simplest solution of this problem is to choose
a more trustworthy server for the client, but in
practise that is not an option for the client. Almost in
every network environments a client machine has
only a limited set of recursive name servers to
choose from, but there is no guarantee that some of
them will be trustworthy. Even if the user of the
client machine is willing to port filtering or perform
some other forms of packet interception, it may
prevent the client host from make a DNS request.
The source of this problem is not the DNS protocol,
this kind of exposure is a threat to DNS clients, and
to just change to another recursive name server is
not a good option of defence.

The only thing that differs between this kind of
betrayal and a packet interception attack is that the
client has freely sent its request to the attacker. To
protect against this is the same method used as with
a packet interception attack. The resolver must either
use TSIG (or some other signature check) or check
the DNSSEC signature by itself, to secure that the
server is a trusted one. But it is important to be
careful, just because you are using TSIG doesn’t
guarantee that a name server is trustworthy. The
only thing TSIG can do is to protect the

communication with the name server who the
resolver already decided to trust in an earlier stage.

3.5 Denial of service attacks
As with any kind of network service, DNS is also

vulnerable against denial of service attacks. Some
people may think that DNSSEC will defend against
it but that is wrong, it may make the problem even
worse for resolvers that check signatures. When you
check signatures it both increases the amount of
messages that needs to answer a query and the
processing cost per DNS message. Another thing
that DNSSEC does not defend against is that DNS
servers also are at risk of being used as a denial of
service amplifiers. Since DNS response packets
usually are bigger than DNS query packets, this can
be used to do a denial of service attack.

Another way to do a denial of service attack is to
make an amplification attack. This is based on the
fact that small queries can generate larger UDP
packets in response, when you do a recursive DNS
attack. In the initial DNS specification, UDP packets
were limited to 512 bytes. With an amplification
factor of 8.5 and 512 byte response, you could at
most use a 60 (512/8.5 ~ 60) byte query to generate
this response. With this in mind it is quite easy to
make a denial of service attack if the attacker has a
botnet consisting of a couple of hundred machines.

4. Successfully performed attacks

4.1.1 DNS cache poisoning
On March 4 2005 the Internet Storm Center

reported that they were getting a lot of reports from
several sites indicating that users were being re-
directed to various malware sites. Sites as
google.com, ebay.com and weather.com all directed
the user to a “bad site”. It later was discovered that
the affected users were using a system which used a
Symantec firewalls with DNS cache. The firewall
contained a vulnerability which had been exploited
in order to poison the firewall’s cache and in that
way re-direct the users when surfing the web for
common sites. [16]

4.1.2 DDoS attacks
On October 21 2002 a large distributed denial of

service attack targeting the thirteen DNS root nodes
was performed. The attack began at approximately

20:45UTC and lasted for about 2 hours until
22:00UTC. Attacks targeting the root nodes of the
domain name system are not unusual but what made
this attack so serious was that all of the thirteen
nodes were attacked at once and nine of them were
disabled. A analyze of the attack however showed
that no end-users noticed the attack in no more way
than that a lookup might have taken some extra time
compared to the normal case. [13]

5. Countermeasures against DNS
attacks

Over the years several things concerning security
have been made to the domain name system. The
problem with the additional section was fixed by
always validate the data it held, the problem with id
number prediction was fixed by implementing better
pseudo random number generators and the port
number over which the DNS messages are sent are
now chosen by random. The next major event
regarding security is to implement DNSSEC. This
will add functionality such as origin authentication
of DNS data and data integrity.

5.1 DNSSEC
DNSSEC stands for DNS Security Extensions

and is a collection of a few new resource records and
protocol modifications that will add more security to
the DNS. There are three major functionalities that it
provides:

• Origin authentication of DNS data
• Data integrity
• Authenticated denial of existence

The former two deals with the concept of how to
make sure that a resolver is indeed communicating
with the correct authoritative DNS server and that no
information in a packet is changed during transit.
The latter one is used in order to “prove” that a
certain record does not exist. The way DNSSEC
provide these functionalities is by using public key
cryptography to sign and authenticate DNS resource
records sets (RRsets). The DNS zone administrator
begins with signing all of the RRsets in the zone
with a private key and then he publishes these
signatures for each RRset in the zone file along with
the public key. The next step is to get this public key
signed by his parent zone administrator. In this way

a “chain of trust” is added to the domain name
system.

In order to achieve this four new resource records
are added to the DNS protocol. These are Resource
Record Signature (RRSIG), DNS Public Key
(DNSKEY), Delegation Signer (DS), and Next
Secure (NSEC).

5.1.1 Resource records
The four added resource records added by

DNSSEC are presented in this section.

5.1.1.1 RRSIG
The Resource Record Signature, RRSIG, is used

to store digital signatures and is used in the DNS
authentication process. In order for a validator to
identify the DNSKEY RR, which will be used to
verify the signature, the RRSIG contains, apart from
the signature, the signer’s name, the algorithm used
and the key tag. Another thing that is specified in the
RRSIG is a validity time which tells how long the
signature is valid.

5.1.1.2 DNSKEY
In order for a resolver to validate a signature it

will need the signer’s public key. This is provided
by the DNSKEY RR. The way this works is that a
zone signs its authoritative RRsets by using a private
key and the resolver then uses the public key in the
DNSKEY to validate the signature. In addition to the
public key, three other fields are provided in the
DNSKEY RR. The first one is a 7 bit field
containing various flags, which for example
indicates if a DNS zone key or some other type of
DNS public key is held by the record. The next field
is the protocol field which have the value 3. The
third field is the algorithm field which tells what
cryptographic algorithm that has been used.

5.1.1.3 DS
The DS, Delegation Signer, RR is used to

indicate that a delegated zone is digitally signed and
which key is used to sign it. The record refers to a
DNSKEY RR by storing the key tag, algorithm
number and a digest of the DNSKEY RR. By
authenticating the DS, a resolver is able to
authenticate also the DNSKEY RR to which the DS
RR points. The place at which the DS record is

stored is at the upper, or parental, side of a
delegation. [14]

5.1.1.4 NSEC
To provide authenticated denial of service the

NSEC (Next Secure) RR is used. The record consists
of two fields where the first one indicates the Next
Domain Name in the zone that has authoritative
data. In this way it proves that there are no names in
between the NSEC’s owner name and the name in
the Next Domain Name field. The second field of
the record is a bitmap which identifies the different
RR types that exist at the NSEC RR’s owner domain
name.

The NSEC RR comes with one drawback, an
attacker who repeatedly asks queries for NSEC
records can eventually retrieve all of the names in
the zone. This concept is known as “walking the
zone” or zone enumeration. [15] In March 2008
NSEC3 was released in order to address this
problem. See [18] for more details.

5.1.2 How it works
When the server has got a request from the client,

DNSSEC adds additional data to the responses that
provide information to allow the client to
authenticate the RRset data response. With the point
of view of transferring the protocol between a query
agent and an authoritative name server, it’s an
addition of a RRSIG part to the data response where
a response can be generated. If there is no
authoritative data to respond in the query the use of
NSEC RR response and its companion RRSIG is
added. It’s also added an RRSIG response covering
records in the authority section and one or more
RRSIG responses to records in response at the
additional section.

The client can check the hash of the RRset data
matches the decrypted RRSIG hash. To generate the
hash of the data, the client takes the RRset response
and uses the algorithm referenced in the RRSIG
record. To decrypt the hash in the RRSIG record,
you encrypt the RRSIG value with the DNSKEY
public key. To accomplish this, the client must also
have the DNSKEY record for the zone.

At the part of the additional section of a
DNSSEC response, you would normally get the
DNSKEY. If the DNSKEY is not validated within
some locally defined period, the client also needs to

validate the DNSKEY value. This results that the
RRSIG record on the DNSKEY value needs to be
verified. Due to the domain zone key validation, a
trust chain back to a trust anchor point is created. If
the domain key is not already a trust anchor, then the
client needs to query the parent zone for the DS
record of the child zone, and this will returns both
DNSKEY RR and an RRSIG value, and a public
key. The returned public key needs to be validated
using the DNSKEY of the parent zone, and that
parent zone public key must be validated and so
on… This will construct a trust chain that probably,
leads back to a trust anchor. When it has, the DNS
response has been validated.

5.1.3 DNSSEC issues
To make a non-secure system like DNS secure,

when it is of such importance in the internet and so
widespread, is not an easy task to accomplish. This
has lead to that DNSSEC has some problems. Here
we will bring up the most critical issues:

• It’s very complex to implement DNSSEC

and it includes some unpleasant cases that
require careful coding. Trivial zone
configuration errors or expired keys can
cause serious problems for a resolver who
uses DNSSEC.

• As we have mentioned earlier, DNSSEC

increases the size of DNS response packets.
This will make DNS servers who uses
DNSSEC, be even more effective as denial
of service amplifiers.

• In most cases key rollover is really challeng-

ing, specifically in the case with keys for the
DNS root zone. That is: how can a key,
which is present in millions of resolvers, be
changed?

• The zone enumeration issue is a

vulnerability which has always been present
in DNSSEC and has been a difficult issue to
resolve. But in March 2008, NSEC3 was
developed to solve this kind of issue.

6. Conclusions
One of the conclusions we have made during the

writing of this report is that even though the domain
name system is very widespread, used by millions of
people every day and not that secure, it still
performs very well. But with the rapid growth of the
Internet and the increased knowledge about its
technologies, more and more people are sure to find
out what “bad things” can be done with the domain
name system. This makes the work concerning
security in DNS even more important and to
continue the work on DNSSEC (and other security
technologies as well) is of great importance and
should never end.

References
[1] P. Mockapetris, DOMAIN NAMES -
CONCEPTS AND FACILITIES, RFC1034,
November 1987

[2] P. Mockapetris, DOMAIN NAMES –
IMPLEMENTATION AND SPECIFICATION,
RFC1035, November 1987

[3] Atkins & Austein, DNS Threat Analysis,
RFC3833, August 2004

[4] Joe Stewart, DNS Cache Poisoning – The next
Generation,
http://www.ida.liu.se/~TDDD17/literature/dnscache.
pdf, January 2003

[5] Luis Grangeia, DNS Cache Snooping or
Snooping the Cache for Fun and Profit,
http://www.rootsecure.net/content/downloads/pdf/dn
s_cache_snooping.pdf, February 2004

[6] AR. Arends et al, DNS Security Introduction and
Requirements, RFC4033, August 2004

[7] AR. Arends et al, Resource Records for the DNS
Security Extensions, RFC4034, March 2005

[8] AR. Arends et al, Protocol Modifications for the
Security Extensions, RFC4035, March 2005

[9] Geoff Huston, DNSSEC – The Theory,
http://ispcolumn.isoc.org/2006-08/dnssec.html,
August 2006

[10] Geoff Huston, DNSSEC – The Opinion,
http://ispcolumn.isoc.org/2006-10/dnssec3.html,
October 2006

[11] Domain Counts & Internet Statistics,
http://www.domaintools.com/internet-statistics/

[12] DNS spoofing techniques
http://www.securesphere.net/download/papers/dnssp
oof.htm

[13] Paul Vixie et al, Events of 21-Oct-2002,
http://d.root-servers.org/october21.txt

[14] O. Gudmundsson, Delegation Signer (DS)
Resource Record (RR), RFC 3658, December 2003

[15] S. Weiler et al, Minimally Covering NSEC
Records and DNSSEC On-line Signing, RFC4470,
April 2006

[16] Kyle Haugsness, Global DNS cache poisoning
attack?; Update...,
http://isc.sans.org/diary.html?storyid=469

[17] Domain Name System,
http://en.wikipedia.org/wiki/Domain_Name_System

[18] B. Laurie et al, DNS Security (DNSSEC)
Hashed Authenticated Denial of Existence,
RFC5155, March 2008

