
Vulnerability Cause Graphs: A Case of Study

Nicolas Chaufette Tommie Haag
Linköpings universitet, Sweden

Email: {nicch907,tomha490}@student.liu.se

Abstract
Vulnerability Cause Graphs is a method for modeling

vulnerabilities and their causes in software products. This
paper aims at studying and evaluating this method.

Vulnerability Cause Graphs give the developer a visual
representation of relationships between vulnerabilities and
their causes, providing a better understanding of the
vulnerabilities. However, the use of this method might also
bring some disadvantages.

In this paper the Vulnerability Cause Graphs are
introduced shortly, followed by three case studies where
this method has been applied to. Finally, we show some of
the advantages and disadvantages found in the method.

1. Introduction
Even though security is an important aspect when

designing software, software engineers do not often take
those aspects into account when designing the software
product. With increasing complexity and distribution of
software, the importance of heeding to security is becoming
more and more critical.

While the vulnerabilities the developers are facing are
often very similar, the lack of knowledge about their causes
often lead to reintroduction of the vulnerabilites in new
software. Modeling vulnerabilities has been described as a
way to organize information about vulnerabilities both to
improve the developers understanding and to reuse the
analysis. Ardi et al. [1] introduce the Vulnerability Cause
Graphs as a method to describe the vulnerabilities, based on
a formal graph representation.

With the aid of security modeling, such as those with
Vulnerability Cause Graphs (VCGs), security problems in
software can be avoided at an early stage in the engineering
process. The application of VCGs has been demonstrated
on well-known vulnerabilities [2]. The goal is to develop a
set of methods and tools, based on the analysis results of
VCG, to improve the prevention of vulnerabilities in new
or existing software.

The VCG method is developed, but not widely used.
This paper aims to conclude what the advantages and
disadvantages there are with the VCG method. We will first
describe how the method works and illustrate it with three
case studies, which treat vulnerabilities under the class of

cross-site scripting vulnerabilities. Finally, we analyze the
advantages and disadvantages of the method.

2. Background
This chapter will discuss the basics of vulnerabilities,

cross-site scripting and VCGs.

2.1 Vulnerabilities
Gollmann defines vulnerabilities as “…weaknesses of a

system that could be accidentally or intentionally exploited
to damage assets” [3]. This means that if vulnerabilities are
exploited, it could violate the confidentiality, integrity or
availability of the system.

Vulnerabilities are, as mentioned, a weakness of a
system. As a designer you would want to mitigate the
vulnerabilities of the system. A mitigation of vulnerabilities
is accomplished by first analyzing what the causes for the
vulnerabilities are, and then designing the software
according to secure practices with the aim to eliminate
those causes.

The vulnerabilities can be classified in various
categories, for example cross-site scripting, buffer
overflows, buffer underwrites, bad privilege assignments,
insecure default configurations (passwords/permissions)
etc.

The classes of vulnerabilities we have chosen to use as
case studies in this report are cross-site scripting (XSS)
vulnerabilities.

2.2 Cross-Site Scripting Vulnerabilities
Web sites nowadays make extensive use of web scripts

like JavaScripts to improve the user experience. However,
this also increases the risk of being attacked by a cross-site
scripting attack.

A XSS vulnerability allows an attacker to inject
malicious code into web pages generated by web
services. The same-origin policy, which states that
scripts loaded from a web page can only access data
belonging to the same domain, is circumvented by
attackers by injecting the malicious code into the web
page of a normally genuine web site. Then, the cookies
and other sensitive data stored by this site in the victim’s
browser can be stolen by the malicious code and sent to
any web site controlled by the attacker.

According to Vogt et al. [5], cross-side scripting
attacks can be separated in two different methods. Using
the first method of injecting malicious code into a
victim's browser, called stored XSS, the attacker injects
malicious code into a web application, such as a
database. If the web site does not filter the input data, a
script can be stored in a database and later retrieved by
the victim's browser.

The second cross-site scripting method, called
reflected XSS is used when the malicious code is not
stored. The code can be for example hidden into a
specially-crafted link contained in an email sent to a
victim. When the victim clicks on the link, the code is
send to the vulnerable web script of a genuine web
server, and the malicious code is written into the web
page.

Since there are only two types of XSS attacks and the
vulnerabilities they use are very likely to be similar, it is
important to model cross-site scripting vulnerabilities to
improve the developer’s understanding and highlight the
vulnerabilities similarities.

2.3 Vulnerability Cause Graphs
The purpose of a VCG is to relate causes to a

vulnerability in a software product. The causes and the
vulnerability are depicted in a directed acyclic graph with
four kinds of nodes: simple, compound, conjunction and
exit nodes. The VCG method has a stable mathematical
foundation which allows transformation of the graph itself.

The process of developing the complete VCG for a
specific vulnerability consists of five steps (for each node)
[2]:

1. Determine the validity of the node
2. Determine if the node needs to be split
3. Determine if the node needs to be converted to

a compound node
4. Find candidates for predecessors in the VCG
5. Organize predecessor candidates in the VCG

All the VCGs that are created are then put into a

Vulnerability Analysis Database (VAD). The purpose of
the VAD is to contain the relationships between
vulnerabilities and causes, thus making it possible to extract
information in future projects or upcoming analysis of new
vulnerabilities [2]. We will not describe the VCG method
in detail here. The reader is encouraged to read the paper
“Modeling Software Vulnerabilities With Vulnerability
Cause Graphs” [2] for a thorough description of the
method itself.

3. Evaluation the VCG Method – Case
Studies

This chapter will describe three case studies where the
VCG method is used. All cases concern cross-site scripting
vulnerabilities.

3.1 Case Study 1: CVE-2002-0902
The first case is chosen from the Common

Vulnerabilities and Exposures (CVE) database and
describes a vulnerability in phpBB, which is a well-
known open-source bulletin board. This vulnerability is
described as follows [4]:

Cross-site scripting vulnerability in phpBB 2.0.0

(phpBB2) allows remote attackers to execute JavaScript
as other phpBB users by including a http:// and a
double-quote (") in the [IMG] tag, which bypasses
phpBB's security check, terminates the src parameter of
the resulting HTML IMG tag, and injects the script.

Figure 1. VCG of the CVE-2002-0902 vulnerability

PhpBB is a powerful and customizable open source
bulletin board package written in PHP. Boerwinkel [8]
found this cross-site scripting vulnerability in phpBB
2.0.0, which allows an attacker to inject arbitrary web
scripts into a web page.

BBCode is a special simple language invented for the
phpBB users to allow both the users to format their
messages without knowledge of HTML tags, and the
administrators to disable the use of HTML tags without
preventing the users to format their message. To display
an image using BBCode, the users just write the URL of

Users are allowed
to enter BBCode

No design of
protection against
code injection in

BBCode

The src-attribute can be
terminated by BBCode

No sanitation of
user input

Unsanitized BBCode
used

Unsanitized
BBCode used

CVE-2002-0902

Protection
against code

injection not part
of the security
requirements

No check for
end-of-string

character

The developer
assumed the

URL was valid
because it started
like a valid URL.

the image between “[img]” and “[/img]”, and phpBB
takes care of the HTML tags produced when the
message is displayed.

Before the message is stored in the database, the URL
of the image should be checked. To do so, the script just
checks that the URL begins with ”http://”, and
assumes that it is a valid URL. To inject HTML code
into the web page, the attacker just adds a quote to the
URL of the image, and anything after the quote will be
interpreted as HTML code on the user web page. For
example the following BBCode
[img]http://n.i/l” onError=”javascript:alert(document.cookie)[/img]

will be interpreted as

informing the user about its own cookie. It is clear
that the developer made a wrong assumption about the
URL presuming it is valid as long as it begin with
“http://”, or did not think about HTML injection at all.

We modeled CVE-2002-0902 using vulnerability
cause graphs. The result is shown in figure 1.

3.2 Case Study 2: CVE-2006-0437
The second case that we have studied concerns another

vulnerability found in phpBB. The description of the
vulnerability is as follows [4]:

Cross-site scripting (XSS) vulnerability in
admin_smilies.php in phpBB 2.0.19 allows remote
attackers to inject arbitrary web script or HTML via
JavaScript events such as "onmouseover" in the (1)
smile_url or (2) smile_emotion parameters, which
bypasses a check for "<" and ">" characters1.

PhpBB gives the user the ability to add, modify or

remove its own smilies. The URL of the smiley to add
can be given as an argument of the script that manages it.
To ensure that the URL does not contain any HTML
code, the script just checks for the existence of the '<'
and '>' characters by replacing them by their HTML
code. That would be enough if the code produced by this
stored field was part of an HTML text node, however
being a displayed smiley, the URL is the value of the
SRC attribute of an IMG tag and the special character to
be tested is the quote character.

An attacker can exploit this vulnerability by inserting
a quote in the URL of the smiley and start writing
attributes of the IMG tag, e.g. DOM events that execute
web scripts. Then, any user that just opens the page

1 Note: The description is wrong. There is indeed a check for ”<” and

”>” – the vulnerability does not allow that check to be bypassed. In fact, the
“<” and “>” characters are the only characters checked!

containing this smiley executes the injected malicious
code. Thus, we believe that the developer forgot about
the HTML code produced by the script that displays the
smiley, or if he did not forget, he did not think about the
possibility to write DOM events.

We modeled CVE-2006-0437 using vulnerability
cause graphs. The result is shown in figure 2.

Figure 2. VCG of the CVE-2006-0437 vulnerability

3.3 Case Study 3: CVE-2006-0806
The third and final case studied is a vulnerability found

in ADOdb. The description of the vulnerability is as
follows [4]:

Multiple cross-site scripting (XSS) vulnerabilities in

ADOdb 4.71, as used in multiple packages such as
phpESP, allow remote attackers to inject arbitrary web
script or HTML via (1) the next_page parameter in
adodb-pager.inc.php and (2) other unspecified vectors
related to PHP_SELF.

ADOdb is a widely used database abstraction library

for PHP. The version 4.71 and below has a vulnerability
that allows an attacker to inject arbitrary HTML code
including web scripts into a victim’s browser.

In addition to unifying the query language and the
management of databases, ADOdb provides a number of
features to facilitate their use. Among others, ADOdb
has the ability to paginate and display the retrieved
database records. However, ADOdb 4.71 and below
contains several cross-site scripting vulnerabilities that
allow an attacker to inject malicious code. We address

Users are allowed
to enter a remote

URL smiley

The developer
did not check for

end-of-string
character

The src-attribute can be
terminated by the URL

No sanitation of
user input

Unsanitized URL

Unsanitized URL

CVE-2006-0437

Protection
against code

injection not part
of the security
requirements

No design of
protection against
code injection in

smiley management

one of these vulnerabilities, concerning the use of an
unchecked variable.

The pagination class detects the number of the actual
page using a session variable which is overwritten by a
GET argument of the script, allowing the user to change
page by following a link, or a wise user to access an
arbitrary page number by modifying the URL.

Although this is a common practice in a pager system,
this variable is here unchecked, and therefore any HTML
code contained in this argument will then be displayed
where the current page number should be displayed.

We show the VCG of this vulnerability in figure 3.
While using GET variables simplify the attack, using
POST variables would not only be inconvenient, but it
would not stop a wise attacker. A solution could be to
simply check that the given page number is a valid
integer, which is what the developers did in the
following version of ADOdb [7].

Figure 3. VCG of the CVE-2006-0806 vulnerability

4. Analysis
It appears that the cross-site scripting vulnerabilities

are often very similar. For example, despite the fact that
four years separate the vulnerabilities CVE-2002-0902
and CVE-2006-0437 and that they concern the same
software, the flaw is basically the same. This indicates
that vulnerabilities could be avoided be using some kind
of vulnerability modeling.

Regarding the utilization of the method, it is a bit hard
to use at first. The logic behind the method is
uncomplicated and intuitive, but when you start using it
you run into some problems addressed in chapter 4.2.
One of the main problems encountered is to figure out at
which abstraction level the causes should be modeled.
Another problem is to determine if a node should be
analyzed more or not. After some practice though, the
method gets easier to utilize. We noticed that when
making the third case study, we had a much better
workflow compared to earlier tries.

4.1 Advantages
Some advantages with the method have been found.

First of all, the method accomplishes to visualize
connections between different kind of causes and
vulnerabilities in a proper way. The use of the vulnerability
analysis database also highlights the way various
vulnerabilities are linked to each other. This allows for an
easy access to information about what to be careful about
when designing a system that must not exhibit a specific
type of vulnerability.

The compound nodes in the VCG allows for
visualization of several layers of abstraction. Depending on
the level of details you want to indulge yourself in, you
have a perfect choice of abstracting to a relevant level
(assuming that enough analysis has been performed). For
example, the figure 3 shows three levels of abstraction.

The VCG provides the developers a method to easily
gather knowledge about vulnerabilities and causes and
make use of this knowledge in upcoming software
projects. For example, we are convinced that if the
design team for phpBB had used VCGs to model the
vulnerability CVE-2002-0902, then they could have
avoided the CVE-2006-0437 vulnerability due to the
knowledge to be found in the VAD (had it existed).

The VCGs provide an overview over the relationships
between vulnerabilities and their causes, which is easier
to comprehend than for example reading vulnerability
reports. In fact, during the writing of this report, we
thought about modeling the vulnerability CVE-2006-
0438 along with the vulnerability CVE-2006-0437
because they usually are described together. But no
matter how many times we read the vulnerability
description, we were not able to understand it. We
believe that if the vulnerability was described by a VCG,
we would have been able to understand it, mostly
because the causes are connected and provides the reader
with an overview.

Another example would be the CVE description of
CVE-2006-0437, which does not fully match the actual
vulnerability. While the description says the '<' and '>'
characters are unchecked, this is in fact the only
characters that are checked, and this is not the cause of

CVE-2006-0806

Unsanitized
variable used when
generating HTML

No sanitation of
user input

Unsanitized values
used in a variable

Unsanitized variable
 used when generating

 HTML

GET is used

No concern
about users

manually enter
GET-parameters

No sanitation
 of user input

the flaw. It is a reasonable assumption that a third-party
person wrote this text from his own understanding of the
vulnerability, based on the description of the person who
found the flaw. This resulted in an incorrect description
for the vulnerability. If it would have been described by
a VCG instead, we think that this kind of
misunderstanding could have been avoided.

4.2 Disadvantages
If the goal of modeling the vulnerabilities is that the

VCGs replace the way the vulnerabilities are actually
described, it could result in a loss of information about
the vulnerabilities. Compared to the reports that are
posted when vulnerabilities are encountered, the VCG
method does not provide any elaborate descriptions of
the vulnerability or its causes. In some reports and for
some vulnerabilities, the author makes a great deal of
describing the flaw in detail. In some cases, examples of
how to attack the vulnerability is given along with the
code containing the flaw. This gives a lot of information
to the developer interested about how to prevent the
vulnerability. The fact that this is lacking in the case of
VCGs is natural, because the method strives for being
general instead of being case-specific.

This generality property demands that the nodes in the
graphs are perfectly clear and unambiguous as not to
lead to misunderstandings or difficulties to interpret the
graphs. The care and effort that has to be put into the
work is thus set at a high level, hence it could otherwise
lead to consistency problems within the VAD. We think
that a good balance between generality and preciseness
is difficult to accomplish.

Another concern with this method that we have found is
that it is hard to know when to stop modeling. As you
partition your VCG by splitting simple nodes or turning
them into compound nodes, it is hard to decide if you
should continue your analysis or not. This is maybe not so
much a disadvantage of the method as it would probably be
better described as a difficulty encountered when using the
method. We think that the developer will overcome this
difficulty with gained experience. The exit criteria just
states that analysis of nodes should be performed until “…
no more changes or additions to the VCG can be found”
[2]. How does one know when no more additions to the
VCG can be found? This problem is strongly connected to
the next problem encountered when using the method: to
know at what abstraction level the analysis should be held
at.

When you are making your analysis of a vulnerability
and its causes, you have the possibility to dig into deep
details (and thus convert simple nodes to compound
nodes) at almost every possible cause. We think that the
method is not really clear about what abstraction level

that qualifies a simple node or a compound node,
respectively.

5. Discussion
The vulnerabilities we have chosen as test cases did not

open up any opportunity to try the more advanced parts of
the VCG method, as more complex graph transformations.
Also, we did not have the opportunity to get the experience
of using an existing VAD for our case studies.

It should be noted that it requires a lot of time to develop
the graphs, mostly because the causes requires a lot of
effort to find. This means that the method is expensive. As
the original paper [2] suggests that an analyst team should
review all graphs inserted into the database before
confirming them. Then we could imagine that an automatic
process ensures that the VAD is duplicate-free and
consistent so there is no duplicates of the same causes in the
database. However, these duties require a lot of time
though, and the company utilizing this method must
balance the cost against the use of implementing and using
a VAD.

The big problem we see is how to design the manual
or automatic processes that make sure that there are not
any duplicates of causes or vulnerabilities in the VAD
and how this database should be maintained.

6. Related work
From the web developer’s point-of-view, the only

way to prevent XSS attack is to make sure that their
scripts do not contain vulnerabilities. While modeling
XSS vulnerabilities can improve their understanding, the
usual way to mitigate vulnerabilities in web services is to
get experience from best practices [6]. Explicitly setting
the character encoding, identifying the special
characters, using filtering techniques and examining
cookies are example of techniques that a web developer
should always have in mind.

In Vogt et al. [5], the authors described and
implemented a method to prevent a XSS attack from the
client-side. While there exist several mechanisms to
protect from cross-site scripting attack on the server side,
few approaches has been developed to prevent leakage
of sensitive data on the client side. The authors of the
paper mentioned above designed and implemented a
method to detect and prevent cross-site scripting. Based
on the fact that the number of sensitive data to be stored
is limited (cookie, location, referrer, ...), they designed a
method to taint and track sensitive data into the
JavaScript engines and even the DOM tree, using both a
dynamic and static data tainting approaches, so that the
browser is alerted when tainted data is sent to an
untrusted web site. The results of their experiments show
that most of the tainted data sent were sent to companies
that collect statistics about traffic on the web sites of

their customers, which is most likely to be legal because
it is specified in their privacy policy. While the use of
web scripts to send sensitive information with the
consent of the privacy policy of the web site is out of our
field of interest, it is noticeable that this method does
success to prevent real XSS attacks and only generates a
small number of false warnings. As such we believe that
in the future this method should be available in browsers.

7. Conclusions
Vulnerability Cause Graphs are visual representations of

vulnerability modeling allowing the developer to get an
overview of the connections between the vulnerabilities
and their causes. While offering arbitrary level of
abstraction and relating the causes together, the method
provides an easier understanding of the vulnerability and
allows a quicker comparison with other vulnerabilities. On
the other hand, the use of this method may result in a loss
of information about the vulnerability and it requires an
additional effort in the modeling of the nodes so that the
graph does not lead to misunderstandings.

Our experience with the method in the context of cross-
site scripting shows that VCGs can be very useful for
preventing vulnerabilities in web development.

A company or an organization could benefit from the
use of VCGs by gathering knowledge about
vulnerabilities and causes and make use of this
knowledge in upcoming software projects.

References
[1] S. Ardi, D. Byers, and N. Shahmehri. ”Toward a

structured unified process for software security”. In
Proceedings of the ICSE 2006 Workshop on Software
Engineering for Secure Systems (SESS06), 2006.

[2] D. Byers, S. Ardi, N. Shahmehri, and C. Duma.
”Modeling Software Vulnerabilities With
Vulnerability Cause Graphs”. In 22th IEEE
International Conference on Software Maintenance
(ICSM’06), 2006.

[3] D. Gollmann: “Computer Security”, 2nd Ed. ISBN 0-
470-86293-9

[4] The common vulnerabilities and exposures list.
http://cve.mitre.org (accessed April 22 2007)

[5] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C.
Kruegel and G. Vigna. ”Cross-Site Scripting
Prevention with Dynamic Data Tainting and Static
Analysis”.

[6] CERT/CC Understanding Malicious Content
Mitigation For Web Development.
http://www.cert.org/tech_tips/malicious_code_
mitigation.html (accessed April 22 2007)

[7] Differences between pager.inc.php 1.1 and 1.2.
http://phpesp.cvs.sourceforge.net/phpesp/phpE
SP/admin/include/lib/adodb/adodb-

pager.inc.php?r1=1.1&r2=1.2 (accessed April 21
2007)

[8] Neophasis Archives Bugtraq, 2002-05
http://archives.neohapsis.com/archives/bugtra
q/2002-05/0234.html (accessed April 25 2007)

