
Development of DNS security, attacks and countermeasures

Karl Andersson
Linköpings Tekniska Högskola

karan496-at-student.liu.se

David Montag
Linköpings Tekniska Högskola

davmo024-at-student.liu.se

Abstract

We use the Internet every day. The Internet relies in its
very foundations on DNS, the Domain Name System. What
most people don’t know is how fragile DNS actually is. This
paper discusses the shortcomings of DNS, and how it is be-
ing secured. We explain common attacks, such as cache poi-
soning and DNS forgery. Then we mention some incidents
briefly, before moving on the improvements. The improve-
ments range from simple fixes, such as randomized ID num-
bers and acceptance policies, to more elaborate solutions
such as TSIG and DNSSEC.

1. Introduction

The Domain Name System is a critical part of the Inter-
net. It is the directory service responsible for (among other
things) translating domain names to IP addresses. Since it
is such a critical component, security is a very important is-
sue in DNS. We will study the domain name system and the
security issues related to it in chapter 2. The development
of attacks will be discussed in chapter 3. Then we will mo-
ve on to security incidents involving DNS in chapter 4, and
how they were resolved. Finally in chapter 5 we will study
how the protocol and its implementations have evolved to
meet the security challenges. In chapter 6 we express some
general thoughts and sum up the report.

2. Domain Name System

The Domain Name System is a system for resolving na-
mes into text/numbers. Its need is motivated by people ge-
nerally being very bad at remembering arbitrary numbers,
but being much better at remembering letters and names hi-
erarchically arranged. Initially in the original ARPANET,
HOSTS.TXT files were used. These files would be distri-
buted to computers with FTP, and they would map every
computer name to an address. The growth of the number of
hosts on the Internet required a better general-purpose na-
me service. There were many ideas but eventually we got to

what we today call DNS. The DNS is structured as a distri-
buted tree with caching. This is needed in order for DNS to
work because of the many many domain names existing. It’s
still in development and numerous RFCs concerning DNS
is still being released.[10]

DNS uses text separated with dots to build up a so-
called fully qualified domain name (FQDN), for instance
www.example.com.. This domain name consist of four parts,
the root (which is empty), the top-level domain (com), the
subdomain, e.g. a company or some other name (examp-
le), and a service (www). When a user wants to resolve a
record for this domain name, he/she will send a request to
a DNS resolver that will check its local cache. If nothing
is found there it will ask a root server (.). The root server
will reply with an NS record stating the name of the com.
nameservers, along with some records indicating at which
IP address the com. servers are. This extra information is
called glue. Now the resolver will continue with sending a
request to a com nameserver, which will reply with infor-
mation about example.com. and so on.

2.1. Packet format

A DNS packet consists of five parts: the header (holds in-
formation about the packet itself), the question, the answer,
the authority (which describes who is the authority for a
domain name) and an additional section (which holds addi-
tional information that could be useful for the resolver). For
an exact description of the DNS packet see RFC1035[2].

2.1.1. Header

The header consist of many different parts, the most impor-
tant part from a security perspective being the ID number.
The ID number “can be used by the requester to match up
replies to outstanding queries.”[2] It’s notable that it says
can and not must. This highlights the fact that the RFC was
not written with security in mind. The ID is most likely used
by every DNS server in use today as it significantly helps
prevent cache poisoning attacks.

The OPCODE field specifies the type of question in the
packet. The most commonly used OPCODE is the stan-

dard query. Another used OPCODE is NOTIFY, which is
used to force a slave DNS server to initiate a zone transfer
from its master.[11] There are also three other OPCODES:
STATUS, UPDATE and IQUERY. The IQUERY was inten-
ded to be used to invert an ordinary record, i.e. to resolve
A 192.0.2.1 to example.com. The IQUERY was obsoleted
with RFC3425[13]. The STATUS OPCODE is not defined
in any RFC and therefore remains unimplemented. The UP-
DATE OPCODE is defined in RFC2136[12] and defines a
way to dynamically update RRs. There are an amount of
flags which define how the query/response should be inter-
preted.

2.1.2. Resource Record

Resource records are used to represent different kinds of da-
ta. The A record is a 32-bit IPv4 address, the AAAA record
is an 128-bit IPv6 address. Other commonly used RRs are
NS, MX, CNAME and PTR. NS is the authoritative name
server record and consist of a domain name. MX specifies
a domain name which can be used for mail exchange. The
MX record consist of a 16-bit preference number and a do-
main name. CNAME is a canonical name and instructs the
resolver to continue its resolving at the domain name poin-
ted at by the CNAME. PTR is used to reverse-resolve IP ad-
dresses to domain names. In IPv4, this is done by taking the
IP address (for instance 127.0.0.1), reverse it (1.0.0.127),
append “.in-addr.arpa.” to it (1.0.0.127.in-addr.arpa.) and
resolve it. The PTR record is used to give names to IP ad-
dresses and is often the hostname of the host. Many ISPs
however give names reflecting the city, location and/or in-
terface speed.

2.1.3. Question section

The question section is used to carry the query sent to an
DNS resolver. The resolver copies it to the question section
in the response, unchanged. One can have multiple ques-
tions in one packet, but usually only one question is sent. In
the question, the type and class of the question are specified.

2.1.4. Answer section

The answer section contains the actual answer to the ques-
tion. As with questions, it’s possible to have multiple an-
swers. The format for Answer, Authority and Additional
section is the same, and consists of a domain name, a ty-
pe, a class, a 32-bit time-to-live (in seconds), a length of the
RDATA and finally the RDATA which is the data associated
with a record.

2.1.5. Authority section

The authority section defines which nameservers are autho-
ritative for a domain name. This is done by passing NS RRs
for servers that are authoritative for the domain. This sec-
tion can also optionally include a SOA RR for the domain.

2.1.6. Additional section

The additional section holds data that may be useful for the
resolver/user when using the other sections. For instance,
when resolving an A/NS/.. record for a domain name, the
replying server sends along A/AAAA records for all the
nameservers because of the bootstrap problem. It’s notable
that previously the data passed in the additional section was
accepted into the cache without any filtering, which made
cache poisoning very easy.

2.2. Shortcomings

The obvious shortcoming when looking at DNS is that
it wasn’t designed with any security in mind. The RFCs for
DNS published in 1987 contain very few references to secu-
rity. One example is, as mentioned above, that the ID num-
ber “can be used by the requester to match up replies to out-
standing queries.”. [2] This is hopefully done by everyone
today but still it shows the mentality at that time. Other ex-
amples are that there is no real definition for how the resol-
ver should handle RRs from the additional section. Should
it only cache things from the same domain, or should it ac-
cept anything?

Another shortcoming that is inevitable with a caching in-
frastructure is that information can become stale and possib-
le intentionally incorrect in some parts. This incorrect in-
formation will spread, and if the DNS infrastructure is built
with too many servers caching from too few and not query-
ing the authoritative nameservers, compromising these few
will spread the incorrect RRs widely. The root servers are
of course the most endangered here, but since they are so
big targets, they’re also probably well protected. Therefore
there is a greater danger for the DNS servers that only act
as caching servers for other caching servers.

There is no real integrity or confidentiality in DNS to-
day. There is DNSSEC, but this is still not widely used and
DNSSEC leaves some things for improvement.

3. Attacks on DNS

Many different attacks against DNS exists. Almost all
of these focus on changing a record somewhere, and it can
be done in many different ways. There are many ways to
change a record but we’ll concentrate on attacks aimed at
the DNS protocol, and not on compromising an actual DNS-
server by some exploit. The distributed nature of DNS, and

Answer: Empty
Authority: evil.com. 3600 IN NS ns.example.com.
Additional: ns.example.com. 3600 IN A 192.0.2.1

Table 1. Additional section injection

the amount of different servers under different administ-
rations in use make DNS vulnerable to attacks. Also, the
caching infrastructure doesn’t exactly improve security. Be-
low, different types of attacks will be discussed.

3.1. Cache poisoning

Cache poisoning can be achieved by changing or adding
a record to a nameserver’s cache. An attacker can use this
technique to change an A record to an IP address under
his control, thus redirecting traffic to himself. Cache poi-
soning is the general concept of changing something in or
adding something to the cache of a nameserver. What ma-
kes this technique very effective is the heavy use of forwar-
ders. Forwarders are nameservers that a resolver forwards
its incoming requests to. Thus if a record is poisoned in a
forwarder, all resolvers that forward to it will also be poiso-
ned. The widespread use of forwarders is discussed further
in a white paper by Dan Kaminsky[14].

3.2. Additional section injection

Additional section injection occurs when unrelated data
is passed in the additional section of a reply, in the hope
that the targeted nameserver will cache this. The attacker
sends a query for a domain name he controls to the targeted
nameserver. The nameserver will then ask the attacker’s na-
meserver. In the old days the attacker’s nameserver would
probably just pass the A records that he wanted to poison
back in the additional section. Nowadays some more com-
plicated way would be used by passing an NS record in the
authority section saying that ns.example.com is the authori-
tative nameserver for his domain and in the additional sec-
tion state that ns.example.com is at his IP address. See table
1 for an example.

3.3. DNS forgery

DNS forgery is an attack in which the attacker forges
a reply to a DNS query. This is done by beating the reply
from the real server back to the client. This scenario is of
particular importance when it comes to wireless networks.

Every DNS query and reply contains a 16-bit ID num-
ber. The number in the reply must match the number in the
query. Without this keeping of state, an attacker could keep
flooding a victim with reply packets for a domain the attac-
ker knows the victim will look up, i.e. google.com. When a

query was made, the victim would accept one of the flooded
reply packets instead.

The ID numbers make this harder, as the attacker has to
match the ID number of the reply with the query. In a wi-
reless network, where all traffic is seen by all nodes, DNS
forgery is a big issue. The attacker could then simply inter-
cept all DNS queries on the network, and send back forged
replies to the victims he or she wants to attack. This won’t
work on a wired network though. On a wired network, the
attack will need to calculate or predict the ID numbers of
queries.

3.3.1. ID/port number prediction

If the attacker has no direct connection to the victim, and
cannot intercept traffic, then the victim’s DNS server must
be targeted instead. This is done by sending a query to the
DNS server, immediately followed by a reply to the query.
What happens is, when the DNS server receives the attac-
ker’s query, it will recursively find out the reply, and send
it back to the attacker. If the attacker spoofs the reply pac-
ket before it arrives from the actual DNS server that knows
the real reply, the attacked DNS server will accept this fal-
se reply and cache it. When someone else then queries the
DNS server for the spoofed domain, the victim will be re-
turned the attacker’s cached records.

You probably see the problem here. The attacked DNS
server’s recursive DNS queries each have an ID. Every reply
must have the corresponding ID for the query it matches.
This means that the attacker must send 65536 packets with
different IDs to be sure to match the ID of the recursive que-
ry. This is a lot of packets. Here we can utilize the birthday
paradox. If the attacker sends, say, 100 queries to the DNS
server (which in turn will send 100 recursive queries), and
then 100 replies with different ID numbers, the probability
of one recursive query ID sent matching a spoofed reply ID
is very high.

There’s also the additional problem of matching the UDP
port numbers of the requests and spoofed replies, i.e. the
spoofed reply must be sent to the UDP port the recursed
request was sent from. Some BIND configurations send all
requests with source port 53. This would make it very ea-
sy to execute an attack like this. Randomized source ports
would mitigate this problem. A birthday attack that brute-
forces the port numbers is possible, but not very effective.
This attack vector is hard to protect against. Also, some na-
meservers might be behind firewalls and thus can only use
a fixed port.[4]

3.3.2. Phase-space analysis

Imagine if the ID numbers for the queries were generated
by a counter. Then an attacker could, by setting up an own
DNS server and querying the victim DNS for a domain that

the attacker’s DNS server served, log the ID numbers of the
requests. By simply knowing one or a few ID numbers, the
attacker could, in this scenario, predict the next ID number
and thus eliminate the need for guessing. If the port number
is known, the poisoning could be done with two packets.

The above example used a counter to generate ID num-
bers. What if ID numbers were generated by a pseudo-
random number generator (PRNG)? Would we be safe? The
answer is no. The attacker could set up the above scenario
again, and log the ID numbers. By performing phase-space
analysis on the collected ID numbers, the next one in se-
quence can be predicted.[5] This poses a great risk if the
attacker can obtain a few ID numbers from the DNS queri-
es.

3.4. Amplification attacks

The DNS amplification attack gets its name from how it
works. It can turn a few kilobytes of traffic into megabytes.
This makes it very effective as a tool for executing distribu-
ted denial of service (DDoS) attacks. Here’s not it works:

The attacker generally begins by compromising a name-
server and inserting a large TXT RR into a zone for which
the nameserver is authoritative. The attacker then queries a
list of public nameservers for the hacked TXT RR, putting
it in the caches of the public nameservers. Public nameser-
vers are nameservers that recursively resolve queries from
the public Internet. The attacker finally executes the attack
by sending spoofed queries to the list of public nameser-
vers for the TXT RR (and possibly other RR). The spoofed
queries have as their source address the victim’s address.
For each query sent by the attacker, the victim will get one
packet. That’s just 1:1, so what? [26]

The key point here is that the replies are much larger
than the queries. This is made possible by RFC2671[27],
Extension Mechanisms for DNS, that allows for increased
UDP buffer sizes. Naturally, the nameservers will have to
support RFC2671 in order to participate effectively in the
attack. This way, a request with a size less than 100B can
generate a reply larger than 4KB.

Now consider the scenario where the attacker has a bot-
net consisting of thousands of machines. Each of these
machines could simply use its ISP’s nameservers to execu-
te the attack. With the amplification 100B→4KB and 1000
bots, that would yield a theoretical payload of 4MB on the
victim, with just 100B per bot. Make every bot send 10KB
worth of requests, and you’ll have an effective DDoS.

4. Incidents

This section will cover some DNS-related security inci-
dents that have taken place over the years.

4.1. The InterNIC incident

In 1997, an affiliate of the registrar AlterNIC, Eugene
Kashpureff, poisoned the caches of major nameservers. Pe-
ople trying to visit www.internic.net, the homepage of the
InterNIC registrar, would instead be presented with Alter-
NIC’s page.[6] AlterNIC was an set of alternative root-
servers with alternative TLDs. The cache poisoning was do-
ne by attacking a vulnerability that existed in BIND prior
to version 4.9.6 and 8.1.1. The vulnerability allowed an at-
tacker to redirect queries to the attackers nameserver and
then pass along bogus glue records in the additional sec-
tion. [24] So why was this very offensive attack done? In
July Networks Solutions who at the time administrated In-
terNIC claimed ownership of the top domains .net, .com and
.org. Their agreement with National Science Foundation
was about to expire and they therefore claimed ownership
of the domain name at the Securities and Exchange Com-
mission. Kashpureff felt this wrong and said that domain
names should be public, he therefore initiated this DNS at-
tack which he later was convicted for. [21][22]

Still today alternative root servers exist but in a smal-
ler extent then at the time of this incident. The Internet Ar-
chitecture Board spoke harshly against alternative roots in
RFC2826 since they divide the global Internet, the RFC fi-
nish with “There is no getting away from the unique root of
the public DNS.”. [23]

4.2. DDoS attacks

There have been two significant DDoS attacks against
DNS over the years. The biggest one took place on Octo-
ber 22, 2002. During this attack, which lasted for about an
hour, nine of the thirteen root nameservers were disabled.
On February 6, 2007, another large-scale DDoS attack was
launched against Internet nameservers. After this attack, US
officials announced that they will be prepared to fight back
with cyber counterattacks and, in the worst case, even actual
bombings of attack sources.[7][8]

It was not because of a vulnerability that these attacks
could be carried out, so why are we mentioning them?
We’re mentioning them because we want to emphasize how
important proper DNS operation is for the Internet, and no-
wadays, for the world.

5. Security development of DNS

This section will cover how the security aspects of DNS
have improved. It will discuss different technologies, along
with their strengths and weaknesses.

5.1. Random ID numbers

As mentioned earlier, it is important that the ID numbers
of queries are non-predictable. Therefore recent versions
of popular nameservers use random IDs for their queries.
Proper randomization can prevent prediction attacks. Phase-
space analysis may still be effective though. Port numbers
of requests are also randomized (by the OS though). These
two factors combined make cache poisoning hard.

5.2. The additional section

Recent versions of BIND handle data from the additio-
nal section in a more sane way than they used to. Different
policies can be employed, both on the server and client si-
des. The default policy is to only accept information that
is related to the query, or that the responding DNS server
is authoritative for. For instance, a caching resolver looking
up www.yahoo.com may only cache glue records from ya-
hoo.com, com and the root servers.[9]

There are different ways to evade the problem described
in chapter 3.2. Depending on the scenario, different policies
can be employed. We have looked at how MaraDNS[28], a
DNS server package, deals with the problems related to the
additional section.

When a reply as the one in table 1 is received, the na-
meserver shouldn’t cache both records received, as all it re-
ally needs to know is the IP address of the nameserver for
evil.com. Therefore it only caches:

evil.com. 3600 IN NS 192.0.2.1

This way, only the relevant information is cached, and the
bogus information is automatically discarded.[29]

Naturally, records in the answer and authority sections
must be for the domain being queried for. Other records are
ignored.[29]

5.3. TSIG

Transaction signatures (TSIG) are a mechanism to secure
communication between DNS servers, or more specifical-
ly, the dynamic updates sent between DNS servers. TSIG
uses shared symmetric keys combined with cryptographic
hashing to authenticate the sender of updates. The update
and the secret key are hashed into a MAC. A time stamp
is also added. The receiver of the update can then check
the authenticity of the update by performing the exact sa-
me hashing procedure. The time stamp prevents the request
from being replayed later.

5.4. DNSSEC

DNSSEC is a set of extensions to DNS that are meant
to provide extra security. DNSSEC’s goals aren’t very well

specified but the general idea is that it should provide da-
ta integrity and data origin authentication. This ensures that
the original zone data not been altered in transit, and that
it in fact is the original zone data that has been acquired.
DNSSEC does not provide data confidentiality or any form
of client authentication (for instance for access control). For
DNSSEC to provide end-to-end data integrity, from the na-
meserver to the end user, the end user’s recursive resolver
(or better yet the end user’s stub resolver), should be DNS-
SEC aware and have the trusted keys installed. This is a
potential problem when it comes to both deployment and
maintaining strong security.[15]

DNSSEC works by introducing a concept of signed zo-
nes. Signed zones contain one or many public DNS key
RRs (DNSKEY), Resource Record Signature RRs (RR-
SIG), Next Secure RRs (NSEC) and optionally a Delegation
Signer RR (DS). A resolver starts with an authenticated key
which can be acquired in three ways:

1. It can be configured in the resolver and is then called
a trusted anchor. Trusted anchors can either secure the
whole hierarchy, or create a secure island.

2. The most common way is by verifying that a DS RR
and its DNSKEY is signed by an authenticated key.
This is part of the authentication chain that a resolver
builds from a trusted anchor to a RRSIG used to sign a
RR.

3. Find a corresponding key that has been signed by an
old verified public key.

There are many reasons why DNSSEC isn’t widely
deployed. Some of these are important technical issues that
need to be resolved, and others are political ones, such as
who should hold the keys. The US government, the ICANN,
the UN? An important technical issue that needs to be resol-
ved is how trusted anchor key rollover should be resolved,
i.e. how a potentially compromised key can be changed,
when it is present in millions of resolvers. There are some
privacy issues with the NSEC RR that allows for zone enu-
meration. NSEC is used to deny the existence of a domain
name in an authenticated way. Also, since DNSSEC is rela-
tive new, more testing is require to strengthen the DNSSEC
standard and the DNSSEC implementations.[17]

5.4.1. Resource Records

The description of the different RRs useds in DNSEC are
taken from RFC4034 [25].

• DNSKEY - DNS Public Key
The DNSKEY RR is used to store the public key who-
es corresponding private key is used to sign resource
record sets (RRsets, an RRset is a collection of RR).

example.com. 86400 IN DNSKEY 256
3 5 (AQPSKmyW ... av4w==)

Table 2. DNSKEY example

The RR consists of four parts, a flag field, a protocol
field that MUST be 3, a algorithm field that defines
what algoritm is used and last the public key. The al-
gorithm that is mandatory to implement according to
RFC4034 is RSA/SHA-1. See table 2 for an example
of a DNSKEY RR.

• RRSIG - Resource Record Signature
The RRSIG RR is used to store the digital signatures
that signs an RRSet. The RRSIG signes a specific RR-
Set with a particulary name, class and type. The RR-
SIG consists of a specification on what type is covered,
the algorithm used, the signer’s name and a keytag to
specify what DNSKEY should be used to verify the
records, there is also an signature start and expiration
time.

• DS - Delegation Signer
The DS RR is used to delegate the zone signing autho-
rity. The presence of a DS indicates that a delegated zo-
ne is digitally signed, it also indicates what key is used
to sign it. For example.com. a DS is present in the com.
zone and NOT in example.com., this simplifies the del-
gation but requires extra response processing. The DS
RR consist of the DNSKEYs keytag, algorithm num-
ber and a digest of the DNSKEY RR, this way when
verifying a DS one has verified the DNSKEY also.

• NSEC - Next Secure
NSEC is used to deny the existence of a specific do-
main. NSEC consist of Next Domain Name and a ty-
pe bitmap that identifies what RRs are present at that
NSEC owner domain name. NSEC is used in a cirular
way where each record points to the next one in cano-
nical ordering (see [25], all the NSEC are signed with
RRSIG. This enables the denying of existance of a do-
main name without needing access to the publickey,
the domain nameserver simply sends back an empty
record and the NSEC before and after the requested
one.

• NSEC3 - Next Secure 3
NSEC3 resource record is currently only in draft form
and is meant to deal with the issue of enumeration of
zones. Instead of including the next domain name a
cryptographic hash of the next domain name is inclu-
ded. See [19] for more information.

5.4.2. Records verification

DNSSEC protects against an attacker trying to modifiy an
existing record, inject extra records or dropping records via
any of the attack vectors discussed earlier. It can do this by
building a chain of DNSKEY and DS from a trusted anchor
all the way to the zone. A RRset can from the security-aware
resolver point of view be in one of the following states.

• Secure
RRset and RSIG can be verified with a chain of
DNSKEY and DS to a trusted anchor.

• Insecure
RRset which is known to have no chain of DNSKEY
and DS RR from any trusted anchor. This can occur
when the zone has no DS record and this is verified
with NSEC records, also it can happen when the RRset
is a descendent of an unsigned zone.

• Bogus
RRset and RSIG should be able to be verified with a
chain of DNSKEY and DS RR to a trusted anchor, but
the resolver is for some reason unable to do so because
of missing/incorrect signatures. This could indicate an
attack or missconfiguration.

• Indeterminate
RRset that the resolver is unable to obtain the neces-
sary DNSSEC RRs for an i thus unable to verify if the
RRset should be signed or not. This can occure if the
resolver is unable to contact a parent. [16]

Any record that is Secure or Insecure could be accep-
ted since they are either secure of verified insecure they can
therefor be accepted. Bogus records should be denied since
the resolver is expecting a signature but is unable to accqui-
re one. The tricker part is Indeterminate records, according
to RFC4033 [20] its up to local policy whether this records
should be denied or accepted. For maximum security they
should probably be denied.

5.4.3. Zone enumeration

Zone enumeration is probably one of the biggest problems
with DNSSEC, and is seen by some as a security vulne-
rability. Usually one doesn’t want all the domain names
in a zone disclosed to the public, because of obscurity re-
asons. Whether this is the correct way or not can be di-
scussed. Still, the truth is that not many nameservers allow
public zone transfers today, and to give away your zone as
a consequence of enabling DNSSEC is unwanted. In the
case of NIC-SE, they clearly state that all domain names
are viewed as public data and therefore doesn’t need to be
protected.[18] The current solution in development is to use

hashed denial of existence records instead of the real record.
This uses the NSEC3 RR, and an Internet Draft is available
at IETF.[19]

To enumerate a zone one simply sends an NSEC type
query to the nameserver. One will then receive the next na-
me in the zone and can use this to enumerate the whole
zone. See the appendix for a small shell script showing this.

5.4.4. Trusted anchor key rollout/rollover

Another key issue is that there is no adequate way to rollout
or rollover the trusted anchor key at the root. [15] Rolling
out a key is how all resolvers should acquire the key from an
authority in a secure way. Rollover is when this key needs to
be changed, changing the root key can be necessary if it has
been compromised or is suspected to have been compromi-
sed. Work on this issue has been done, but no good way has
been presented. Right now NIC-SE uses out-of-band com-
munication with a mailing list and PGP signed keys.

6. Conclusions

Our conclusion is that DNS was not designed to be secu-
re and was designed at a time when security was not the
top priority. DNS is actually rather insecure, and there is
much left to be wished. However, it works considerable
well. The attacks available today are considarably more ad-
vanced than those used a few years ago. The authors belei-
ve that DNS security and attacks on DNS will continue to
play an important role, even in the future. DNSSEC is a step
against a more secure DNS, but it leaves some things to be
wanted, and is not quite ready for full deployment. Some of
the barriers that DNSSEC has to overcome are non-trivial,
such as who should have control over the root keys, and a
number of technical problems.

References

[1] P. Mockapetris, DOMAIN NAMES - CONCEPTS AND
FACILITIES, RFC1034, November 1987

[2] P. Mockapetris, DOMAIN NAMES - IMPLEMENTA-
TION AND SPECIFICATION, RFC1035, November
1987

[3] M. Lottor, DOMAIN ADMINISTRATORS OPERA-
TIONS GUIDE, RFC1033, November 1987

[4] C. Liu, P. Albitz, DNS and BIND, Fifth Edition, p. 271,
May 2006

[5] Strange Attractors and TCP/IP Sequence Num-
ber Analysis, BindView RAZOR White Paper,
http://www.bindview.com/Services/Razor/
Papers/2001/tcpseq.cfm

[6] C. Liu, P. Albitz, DNS and BIND, Fifth Edition, p. 282,
May 2006

[7] David McGuire and Brian Krebs, At-
tack On Internet Called Largest Ever
http://www.washingtonpost.com/ac2/wp-dyn/A828-
2002Oct22, October 2002

[8] E. Messmer, Network World, February 8, 2007,
http://www.networkworld.com/news/2007/020807-
rsa-cyber-attacks.html

[9] D. J. Bernstein, http://cr.yp.to/djbdns/notes.html

[10] András Salamon, http://www.dns.net/dnsrd/rfc/, DNS
related RFCs, 2004

[11] P. Vixie, A Mechanism for Prompt Notification of Zone
Changes (DNS NOTIFY), RFC1996, August 1996

[12] P. Vixie, Editor, Dynamic Updates in the Domain Na-
me System (DNS UPDATE), RFC2136, April 1997

[13] D. Lawrence, Obsoleting IQUERY, RFC3425, No-
vember 2002

[14] Dan Kaminsky, Explorations In Namespace: White-
Hat Hacking Across The Domain Name System,
http://www.doxpara.com/cacm kaminsky.pdf

[15] Atkins & Austein, DNS Threat Analysis, RFC3833,
August 2004

[16] AR. Arends et al, Protocol Modifications for the DNS
Security Extensions, RFC4035, August 2004

[17] Thierry Moreau, DNSSEC Deployment at the Root
http://www.circleid.com/posts/dnssec deployment at root/,
May 2006

[18] NIC-SE statement regarding NSEC zone walking
http://www.ops.ietf.org/lists/namedroppers/
namedroppers.2004/msg00663.html

[19] B. Laurie et al, DNSSEC Hashed Authen-
ticated Denial of Existence, January 2007
http://www.ietf.org/internet-drafts/draft-ietf-dnsext-
nsec3-10.txt

[20] R. Arends etal, DNS Security Introduction and Requi-
rements, March 2005

[21] Janet Kornblum, Temporary order issued against Al-
terNIC http://news.com.com/2100-1033-201733.html,
July 23, 1997

[22] Courtney Macavinta, AlterNIC takes over Inter-
NIC traffic http://news.com.com/2100-1033 3-
201382.html, July 14, 1997

[23] Internet Architecture Board, IAB Technical Comment
on the Unique DNS Root, RFC2826, May 2000

[24] http://osaka.law.miami.edu/ froomkin/articles/icann-
antitrust.pdf

[25] R. Arends et al, Resource Records for the DNS Secu-
rity Extensions, RFC4035, March 2005

[26] R. Vaughn, G. Evron, 2006,
http://www.isotf.org/news/DNS-Amplification-
Attacks.pdf

[27] P. Vixie, Extension Mechanisms for DNS (EDNS0),
RFC2671, August 1999

[28] MaraDNS, http://www.maradns.org/

[29] MaraDNS, http://www.maradns.org/cache poison protection.html

Appendices
#!/bin/sh

NAME=se.

while true
do

echo $NAME
NAME=‘dig +short NSEC $NAME @a.ns.se \

| cut -d ’ ’ -f 1‘
sleep 0.1

done

