TDDCO3 Projects, Spring 2006

Java Permissions -- Are they all created equal?

Pierre-Emmanuel Bourgué

Jean-Sébastien Susset

Supervisor: Almut Herzog



Java Permissions -- Arethey all created equal ?

Pierre-Emmanuel Bourgué

Jean-SélraStisset

Link6pings universitetet, Sweden
Email: {piebo882, jeasul65}@student.liu.se

Abstract

The paper concerns the classification of Java
permissions according to their severity. It prowdmth
technical comments and tips for average users,adsal
a collection of codes showing the dangerousnetisest
permissions. Finally, the classification gives good
support to compare the various permissions

1. Introduction

In Java, some sensitive actions may require special
rights, called permissions, from the user in ordebe
executed. Applets always need these permissionts, bu
applications only need them if the user has asked f
high level of security (SecurityManager enabled).

The difficulty for a user is to know which
permissions are necessary so that a given applicati
can run, what a given permission really allowshe t
code, what are the risks for the user's system when
granting a given permission to a code...etc.

In order to help users, we rank and comment all the
Java permissions both with technical details aref-us
friendly hints explaining what the permission albw
the code to do. Finally, we have implemented code
examples showing these risks in a more concrete
manner by exploiting security flaws created when
granting permissions.

2. Background

Here are some reminders about security concepts
which are used afterwards.

Bishop [1] defines the three following principle o
security:

- Confidentialityis the concealment of information
Or resources.

- Integrity refers to the trustworthiness of data or
resources, and it is usually phrased in terms of
preventing improper or unauthorized change.

- Availability refers to the ability to use the
information or resource desired.

DoS: Attempt to block availability [1 ].

According to the Java website [2]:

- A permission represents access to a system
resource.

- Security policy fileThe policy file(s) specify what
permissions are allowed for code from specifiedecod
sources.

3. Solution and Analysis

Java permission can have at most two parameters: a
target name and optionally a list of one or several
actions.

Here is an example for FilePermission:

permission java.io. FilePermssion "/tnp/abc",
"read";

There are two types of permissions:
- Predefined permissions (Java2 Permissions)
that we worked on;
- User-defined permissions i.e. customized
permissions developed for a particular goal.

One can create a new permission by extending the
Permission class or one of its subclasses
(BasicPermission, SocketPermission...etc.). A user-
defined permission can be added to the policyafile
any other native permission. Sometimes, the class o
this permission is loaded at runtime from a distant
host, so when the security policy is initializeé th
permission is “unresolved”. In this case, the
UnresolvedPermission is heeded.

The user-defined permissions are at least as
dangerous as the permissions they extend. Fiesg th
are risks due to the parent permissions (cf.
classification). Second, there are new threatstalue
the re-implementation, possibly by a hacker, ofveat
methods and the development of new methods,
possibly malicious.

The enclosed documents constitute the completion
of our work. It contains a technical comment and a
user-friendly hint for each permission/target name.
This tip is intended to help an average user sbhba
can take the decision to grant or not the given
permission. The technical comment especially
explains the ways a malicious code could explait th
permissions to improve its attack (directly or
indirectly).

The methodology we used in the exploit code
development is to show the execution of a single
code in two cases: when the policy file is emptd an
when the given permission (and possibly others if i
is really necessary for the demonstration) is gaunt



The code simulates a typical attack that hacketdcou -
perform exploiting the given permission.

3.1. Evaluation

Classify the Java permissions by their severitg is
bit tricky. Indeed, many parameters have to bertake
into account:

- What are the priorities in the user's security -
policy? It can be confidentiality, integrity and/or
availability. However, it is often impossible toferce
them simultaneously. So, a choice must be doné&dy t
user (person or company) depending on what he ghink -
to be the worst for him/his company. It may be DoS,
the leak of confidential data, or the corruptiordafa;

For example, if a company gives top priority to the -
integrity and availability of data at the expengele
confidentiality, the security policy will be veryrigt on
permissions which may cause DoS but will be looser -
on those which may facilitate leak of data.

- From one people to another, the definition of a
level of gravity varies a lot. It is quite a sulijee -
feeling. Where does high level of severity finistda
where does medium level of severity begin? -

- The consequences of granting a Java permission
often depend on the granting or not of other
permissions. The number of possible scenario is as
huge as the number of permissions, not counting the -
user-defined permissions. -

In each level of severity, the Java permissionseau
the three criteria to be no longer maintained. The -
severity of this flaw is assessed at a level adngrtb
the type (common, confidential, secret...etc.) ang th
quantity/range of data that can be accessed ounptead
(disclosure of information), the damage and
consequences of the attack (e.g. DoS) on the
system/user’s business ...etc.

Our

Low:

Those which are necessary for the other
permissions to be really dangerous, e.qg.
SocketPermission;

Those which severely fool the user and may
cause important repercussions in the future.

Medium:

Those which cause quite important but
obvious DoS (the user will be able to fix the
problem or the DoS will probably not be
able to damage the system very long);

Those which can fool the user in a smaller
proportion or less slyly than in the highest
level;

Those which can modify properties of the
security configuration, but which cannot
obtain more permissions anyway;

Those which can retrieve information about
the security policy that can be useful to
prepare a future attack;

Those which can access the user's data
without being able to change it;
Those which can obviously
confidential data.

retrieve

Those which can do small DoS;

Those which can retrieve basic system
properties without being able to use them
immediately;

Those which can hide the hacker's traces

(Logging).

4. Conclusions

classification contains user-friendly hints

whose goal is to explain in a simple and colounfaly

to users the risks to grant permissions to codaessd

We classified permissions into three different lseve
of dangerousness: high, medium and low severity.

tips could be used for this purpose in a userfater
Besides, the classification gives an overview ef th

severity of each action according to its threatstlie

High:

- Those which may obtain directly or indirectly
all the privileges or at least a lot more than
they should have had;

- Those which can reach critical data and
methods without restrictions, e.g. protected
variables, native classes or external libraries;

- Those which can do a important DoS
(possibly tricky and silent), by controlling the
user’s data and resources and damaging the

user, thus permitting a comparison between the
permissions.

5. References

[1] Matt Bishop, Introduction to computer security,
Addison-Wesley, 2004.

[2] Permissions in the Java TM 2 Standard Edition
Development Kit (JDK)
http://java.sun.com/j2se/1.5.0/docs/quide/secyréy/

user’s system;

- Those which can retrieve very critical and
secret data that can possibly be re-used in
future attacks;

missions.htmlspring 2006



High severity

java.security.AllPermission

Exploit code comment or Exploit

Action Severity User-friendly hint Strategy
Grant the code with all the
permissions. That will help the code
a lot to pirate the user's system. $&ranting this permission allows th&he exploit code displays one
none below to have details about theode to do what it wants on yousystem property (os.name) and
other permissions. system. creates a file.
So, Confidentiality, Integrity and
Availability are no longer ensured.
java.lang.RuntimePermission
Action Severity User-friendly hint Exploit code comment or Exploit
Strategy
Grant th'.s permission gives ALL . . . An exploit strategy would be to
the permissions to the code. Indeg@ranting this permission may allow
. ; create our own subclass |of
a malicious code could make use hacker to grant himself all treC ;
createClassLoader o N | ClassLoader and then use it to lgad
ClassLoader to give it all the rights.rights he needs before attacking . ~. .
: LS, ) alicious classes granted with
So, Confidentiality, Integrity andyour system. e
Lo adequate permissions.
Availability are no longer ensured.
Granting this permission allows tdsranting this permission allows |&he exploit code uses a system
createSecurityManager | create a new SecurityManager andalicious code to change youmanager that does not check
use it to replace the former one. Theecurity policy. This is verypermissions before the execution|of




new SecurityManager can |
malicious and bypass the che
permission mechanism. If th
security manager does not check
permissions, it has the san
consequences than granting “A
permission”.

So, Confidentiality, Integrity an
Avalilability are no longer ensured.

pelangerous because a hacker cg
cfgrant himself privileges in order 1
alo more damage on your computs
the

ne

All

o)

wdile.
0
2l

setSecurityManager

Granting this permission allow
setting the SecurityManage
replacing the former one. TH
SecurityManager can be malicio
and bypass the check permiss

mechanism. If the security manage

does not check the permissions

has the same consequences th

granting “All permission”.
So, Confidentiality, Integrity an
Availability are no longer ensured.

S
r
uegrant_ing this permission allows
Orﬂallc[ous che to phar_lge yo
security policy. This is very
angerous because a hacker cg

rnant himself privileges in order f{

8]

0 more damage on your compute

Not implemented.

loadLibrary.{library name}

Allow the code to load native coc
libraries. Because
prevent malicious behaviour at th
level, a malicious code may use t
opportunity to pirate the user
system.

For instance, a malicious code m

they do not

le

s
Nis
LGranting this permission allows tk
code to access powerful but uns
agystem operations that cou

use native methods to explore th@éamage your computer.

user's computer, to make t
system misbehave or simply corry
existing data.

ne
pt

So, Confidentiality, Integrity an

An exploit strategy would be t
]el}oad a native library (.so on a Un
SlFtation and .dll on a Window
| Gfation) and use its methods
aunch the execution of a progrs
or disturb the system by destroyi

some processes.

8}

iX
S

m
g

-




Avalilability are no longer ensure
Threats: espionage and DoS.

accessClassinPackage,
{package name}

Allow the code to load classes fro
packages that it normally can n
reach. These classes could helj
malicious code to attack the use
system.

So, Confidentiality, Integrity an
Availability are no longer ensure
Threats: espionage and DoS.

m
ot
D Granting this permission allows tk
I'sode to access powerful but uns
operations that could damage yq
dcomputer.
.

e
afe

ur Not implemented.

defineClassinPackage.
{package name}

Allow the code to add new class
in any package. As system packa
have special rights, adding a clasg
such a package will also give t
malicious class these permissig
and help the code to attack to atta
the user’s system.

So, Confidentiality, Integrity an
Availability are no longer ensure
Threats: espionage and DoS.

es
n€&ranting this permission allows tk
, gode to define new operation
npossibly malicious, in some plac
nhat your system considers

ackustworthy.  This is  dangerol
because your system will then try
dthe hacker’'s operations and do f
dcheck their severity.

ne
S,
eS
as
IS
ISt
not

Not implemented.

accessDeclaredMembers

Allow the code to access variabl

S

and methods regardless of their
protection level (public, protected
or private. So, a malicious co

. . ranting this permission allows tk
may access private variable of well-

known classes and bvpass h%ode to access data and operati
5 . yp in the application without an
protections, e.g. allowed values,

This can help a hacker to pirate hreestrlctlons. This could cause t

, . application to misbehave.
user’'s system in a better way.
So, Confidentiality, Integrity an
Avalilability are no longer ensured.

0

A possible exploit strategy could b
0 access protected variables and
Eﬁange their values regardless of

Il

y

q?:f. ReflectPermission.

Threats: DoS and espionage.

griginal restrictions (via accessors).

e
to
the




getClassLoader

Allow the code to retrieve the cla
loader of the calling class.

A malicious code can then lod
forbidden classes (distant class

for instance) that is classes that t |

ClassLoader also manages.

So, Confidentiality, Integrity an
Avalilability are no longer ensure
Threats: DoS and espionage.

5S

P4

(F?ranting this permission allows
acker to use some system acti

N
D

hjs
0 access. A hacker could use st

joperations to do more damage
Lyour system.

§Rat he should never have the right

a
DNS

uch
on

Not implemented.

setContextClassLoader

Allow the code to change “whic
ContextClassLoader is used for
particular thread, including syste
threads”.

So, Confidentiality, Integrity an
Avalilability are no longer ensure
Threats: DoS and espionage.

hGranting this permission allows

macker to use some system acti
to access. A hacker could use sl
operations to do more damage
your system.

o)
o)

a
DNS

that he should never have the right

uch
on

Not implemented.

setlO

Allow to route the information fron
the standard input, output and er
streams to other destinations.

So, Confidentiality, Integrity an
Availability are no longer ensure

1 Granting this permission may allo
r@ hacker to control the
(keyboard) and output (screen
dfile) of your computer. This i
ddangerous because a hacker cd

Threats: Espionage, fool user angby your inputs and deny yda

inpu

o

-

°r
u
1

4

Possible exploit strategies would
or instance:

be

- to deny the user access to the in
r :
nd output of his computer by

ting them in hidden destination

put

S.

steal confidential information

DoS. access to the screen, for example passwor_d, industrial  secrets..)
from the input.
Allow the code to access . . . ]
: . . Granting this permission allows an

FileDescriptors and to write in the o )
i . - attacker to write into your files ar . .

associated files. A malicious code S ' A possible exploit code would be to
: [,0ther communication channels like' . . S .

- . may insert a huge amount of data . . . |.write into a file, via its file
writeFileDescriptor . . our internet connections. This |is . :
(possibly corrupted by viruses) descriptor, a huge amount of datg in

the user’s disk.
So, Confidentiality, Integrity an

very dangerous because an attac
may be able to write viruses on yg

|5

Avalilability are no longer ensure

Ker

j_dlsk.

u(?rder to overload the user’s disk.




| Threats: Espionage and DoS.

java.security.SecurityPermission

Exploit code comment or Exploit

certificates that the system shot
not be trusted.
Integrity and confidentiality an

i ackers’ attack can be facilitated

jgranting this permission.

availability are no longer ensured.

Action Severity User-friendly hint Strategy
A security policy states which
permissions are granted, to who and
in which situations. This permission
allows the code to replace the
g)rilestlng security policy by anOtherGranting this permission allows the
o | code to grant itself the privileges|it
A malicious code may create its ceds. This is very dangerous
setPolicy own security policy and grant itsel ecauée malicious code may Use Not implemented
all the permissions in order to makﬁmt to make damage on your
the maximum possible damage O(r;]omputer
the user’s system. '
So, Confidentiality, Integrity and
Availability are not granted
anymore.
Threats: espionage, fool users, DoS.
Allow to change the system scope.
A system scope is the mappng;ranting this permission allows
be.tween trustworthy real World%our applicaion to  execute
object (peqple, company) and thauntrustworthy code by atrtificially .
setSystemScope own public key. It can add ranting  them a  certificaté Not implemented




Threats: fool

DoS.

Espionage, use

IS,

setSignerKeyPair

A malicious code can change usé&bow this permission can endang

keys pair with weaker pair. So,
can use it to eavesdrop more ea
data communication.

The target of this attack is the

confidentiality of the user’s data.

ithe confidentiality of your signe
silgessages. Hackers can eavesq
more easily your transmission.

er
d
Irop

Not implemented

setldentityPublicKey

Allow the code to modify the publi
key of a trusted Identity (person
company).

A malicious code may replace t
current public key by its own on
So, applets or applications sign
by the hacker’'s private key wi
obtain all the permissions grant

for the former trusted Identity. The

hacker may use them to damage
system or spy the user’s data.

So, Confidentiality, Integrity an
availability are no longer ensured.

Threats: espionage, DoS and fool

users.

or

ne

ag,ranting this permission allows tt
ﬁcode to usurp the identity ¢
L§omeone you trust by anoth
“1dentity, possibly malicious. Thu

QU may be fool by a hacke

o)

thinking he is a trustworthy person.

e
pf
er

5,

=~

Not implemented

addldentityCertificate

Allow the code to add a ne
certificate to a given Identity. If it i
a trusty Identity, with a know
public key, the certificate mu
contain the same public ke

Otherwise, the public key in theexisting contact. This could give tf

new certificate will from then als

be the Identity’s public key (ct.

setldentityPublicKey possibl

W

~

»)
nGranting this permission allows tk

ypossibly created by a hacker, to

phacker your trust.

scode to add a new certificate,

ne

an
ne

€

Not implemented.




damage threats).

A malicious code may prepare
future attack with a signed applet
application using this certificate af
use the corresponding privileges
pirate the system in a better way.

So, Confidentiality, Integrity an
Availability are no longer ensured.
Threats: Espionage, fool use
DoS.

a
or
nd

to

| =N

IS,

getSignerPrivateKey

A malicious code can retrieve tl
private key of the current user.
you allow this permission to
malicious server, the code can se
the key and hackers can use it
usurp your identity and decry
your confidential data.

So, the integrity availability an
confidentiality is no longer ensurg
because a private key can be ust
decrypt cipher from public key an
sign your data.

Threat : DoS, espionage

ne
If
a

nd

to

pif  you grant this permissior
malicious code can usurp Yyo
didentity  and decrypt  you
2atonfidential data.

> to

d

Not implemented

removeldentityCertificate

Allow the code to remove

certificate from an Identity (persa
or company).

A malicious code may eliminate
certificate to deny access

diminish the privileges of a
Identity.

a
rnGranting this permission allows tt
code to remove an existin
&ertificate proving your trust in
pgiven contact. Thus, misbehaviol
hmay happen in your futun
transactions.

So, Integrity and Availability are np

ne

g Not implemented




longer ensured.
Threats: DoS.

java.io.FilePermission

Action

Severity

User-friendly hint

Exploit code comment or Exploit
Strategy

execute

Allow to execute a file.

Granting this permission allows the
e&ranting this permission allows the

code to launch other softwar
without advising you.

These softwares can be malicious. without any advice. If this softwar
b

So, Confidentiality, Integrity an
Avalilability are no longer ensure
depending on the nature of t
executable file.

code to launch other software
dare malicious your system can
ddamaged.

he

The exploit code executes a chosen
ile.
e

write

Allow to create and modify files.

If a malicious code gets th
permission, it can empty file ¢
create malicious files.

So, Integrity of files is not ensured

scode to modify your files and crea
mew ones in your system.
If your system files are modified
. your computer can misbehave.

Granting this permission allows the

terhe exploit code creates a file
the computer.

DN

delete

Allow to delete files.

So, Availability is no longe

ensured. Threat: DoS.

| Granting this permission allows thdhe exploit code deletes a giv
code to delete files on your systemfile.

10



java.net.SocketPermission

Exploit code comment or Exploit

(thanks to other permissions likdecause the code may accepi
PropertyPermission,
FilePermission...etc.), he will be
able to send it on his own host.

So, Confidentiality and Availabilit

connection from a hacker’s server|

was concurrent

overloading the server.

are no longer ensured.

11

Action Severity User-friendly hint Strategy
Allow the code to create ja
connection with a given server (pr
every server if one use the wildcard
*). Then, the code may send over
this socket some confidential data. The exploit code (client-side)
It can also receive malicious dat&ranting this permission allows thereates a Socket on a distant host
from the distant host. code to connect to a distanfserver-side). Then, it sends
connect However, in order to make damageomputer. This is dangerousonfidential data (a String) and wait
the hacker may need othebecause the code may connect yéor the answer of the server |(a
permissions (FilePermissionto a hacker’s server. String).
PropertyPermission...).
So, Confidentiality and Availability
are no longer ensured.
Threats: DoS and espionage |(at
least).
Allow the code to accept the . .
: A server-side program waits for
creation of a socket and |a . .
. ) , connections on a given port. |It
connection from a distant host:part. )
o : accepts the connection from the
A malicious distant host may then : i . .
- . . . . client-side program. This client
send and receive information fron@ranting this permission allows th(—f-
\ . : akes advantage of the server |by
the user’s host. So, if the hacker ha®de to accept connection from 2ondi =1
; : . o ending useless data and wasting its
accept collected confidential data beforalistant computer. This is dangerou[s : .
ime. It is an example of DoS. This

would be even worse if the server
because many
connections would be able to do
this kind of DoS in the same timg,



Threats: espionage and DoS
least).

(at

java.awt. AWTPermission

the data.

permission.

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy
Allow the code to be notified of all
the graphics events on the
computer. A malicious code may be
ableto: .
. , y A exploit strategy would be to add
- retrieve some confidential .
. . : an AWTEventListener to the
information, e.g. input from .
Toolkit. Then, the code can chogse
the keyboard. . . — : X
) .| Granting this permission allows thevhat type of graphics events |[it
- Modify current graphics i ,
. . code to spy and control what you deants to listen (key event, cursor’s
listenTOAIIAWTEvents events Into process_ . q : , )
(AWTQueue) Wlth your mouse and keyboard. Sanoving, frame’s movmg...etc). For
it may steal your passwords. instance, the code will be able [to
- Stop the normal use of the . .
. retrieve each character entered in a
computer, e.g. by adding . .
. password field, thus obtaining the
random graphics events USEr's password
So Confidentiality, Integrity and P '
Availability are not ensured
anymore.
Threats: espionage and DoS.
Allow the code to have a read apGranting this permission allows th&'he exploit code scans the
write access to the AWT Clipboardcode to access the data you copy/atlipboard and shows the first
accessClioboard A malicious code may see théfile, text...). Thus, you can losecontent being a String or an
P content of a file you copy/paste fodata that you cut/copied in thénputStreamReader. If you copy|a
example. It can also corrupt or erasgipboard if a hacker exploits thjgortion of text in a document and

then run the exploit code, the copied

12



So Confidentiality,
Availability are
anymore.

Threats: espionage and DoS.

Integrity an
not ensure

=

data will
console.

be displayed

in th

readDisplayPixels

Allow the code to read pixels fror
the screen.

A malicious code may be able
look at the wuser's screen a
possibly be aware of confidenti
information.
Confidentiality is
anymore.

not ensure

m

to

nGranting this permission allows tk

atode to watch your screen and th
spy what you are doing.

d

e
Udot implemented.

Threats: espionage.

13




java.lang.reflect.ReflectPermission

Exploit code comment or Exploit

Avalilability are no longer ensured.

Threats: DoS (at least)

Action Severity User-friendly hint Strategy

Allow the code to access variahle

and method regardless of their

protection level (public, protected The exploit code shows that, thanks

or private). It also permits a code |to to this permission, it is possible to

modify a “final” variable. access a private variable withqut

So, a malicious code may access . . . gassing by its accessors (setXX and
: ; ranting this permission allows th :

private variables of well-known : etXX), and so, set value that |is

suppressAccessChecks .| code to access data without a .

classes and bypass the protectid Retrictions ormally not allowed. In this casg,

e.g. allowed values. This can help & ' the variable is initialized at 50. The

hacker to pirate the user’s systeni in code set it to -3 when the values are

a better way. normally restricted by the accessor

So, Confidentiality, Integrity and setXX between 0 and 100.

14



java.net.NetPermission

Action

Severity

User-friendly hint

Exploit code comment or Exploit
Strategy

specifyStreamHandler

Allow the code to create an UR
instance and specify its handlg
The handler handles the connect
mechanism for a given protocol.
A malicious code may create |
own handler for a given protoc
and use it to have an easiest acq
to some data that it should ney
have access otherwise.

So, Confidentiality, Integrity an
Avalilability are no longer ensured.

el

tS
D

o]

Threats: espionage and DoS.

L

0(Eranting this permission allows tt
code to redefine the way ya

e% file...). So, a hacker may K
el %e to access confidential data
make your communicatio
misbehave.

ne
u

ommunicate and access data (http,

e
or
n

Not implemented

15




javax.net.ssl.SSLPermission

Exploit code comment or Exploit

D,

Action Severity User-friendly hint Strategy
A supposed trusty and secure
connection may become
untrustworthy and insecure if such
permission is given to a malicious
code. Indeed, if there is a mismatch
between a Server (cqntacted via a@ranting this permission allows th&'he exploit code creates
SSL connection) and its name in the o .
. . code to bypass a so-called secuHostVerifier whose verification
certificate, the code may simply : oo
. , .. “1°connection and so to connect younethod always return ‘true’. S
. authorize the connection. So, if the : = . :
setHostnameVerifier computer to a possibly maliciousluring the secure connection

hacker owns this server, he may|b
b

"ol the security protections.

2d
(also possibly Confidentiality and

able to use the privileges granted
the certificate to damage the use
system.
So, Integrity is no longer ensurg
Availability, depending on th
certificate).

a)

-

Threats: fool users (at least).

jstant computer. Basically, th
ermission authorizes a hacker

ifhandshake, a mismatch between
toame in the certificate and the h
will always be authorized.

16

the
DSt



Medium severity

java.lang.RuntimePermission

Action

Severity

User-friendly hint

Exploit code comment or Exploit
Strategy

setFactory

Allow the code to create its ow
implementation of factorie
(SocketFactory,
StreamHandlerFactory ...) The
factories are used to create instan
of the corresponding classes. S¢
malicious code could impleme
factories which creates modifi
instances (in comparison with tf
original classes - SocketFactory.
by adding additional operations
by corrupting the existing ones.
So, Confidentiality, Integrity an
Avalilability are no longer ensure
Threats: DoS and espionage.

[

n

5€

cgs . . .
ranting this permission may allo
D A : O

hacker to redefine communicati
. mechanisms used for netwg
1é;onnections for instance. A hack

ay use this opportunity to sno

o.r n the data transferred or corrupt

-

LU

An exploit strategy would be t

create a new subclass of Sock
Wl his class may deal more loosg
pwith security, network parameter
rke.g. timeout, or compression f
g@nstance. The malicious code col
ppise this to do DoS on the use
tconnections (random maodificatig
of the timeout for example) or
copy the data transferred and se
on a distant host via another sock

readFileDescriptor

Allow the code to access
FileDescriptor, and thus, to read t
associated file.
So, Confidentiality is no longeg
ensured. Threat: Espionage.

aGranting this permission allows 3
he .

attacker to read your files or oth
communication channel like yol
internet connections.

=

ier%\ typical exploit strategy would b

il descriptor.

create a new SocketFactory that ¢

i
nd it

0
an
et.
2ly
S,
or
ild
I's
n

a)
-

t.

[¢)

fo read the content of a file via its

exitvVvM

Allow the code to halt the JVM. S

pGranting this permission allows
l.malicious code to halt all the Ja

aAn exploit strategy would be to o

(0]

Availability is no longer ensurec

vB®0S on the user’s system by halti

17



Threat: DoS.

applications currently running
your system.

aime JVM, thus terminating the Ja

system.

programs currently running on the

Allow the code to control th

shutting down of the JVM.

eGranting this permission may allo

a hacker to stop the execution of the

W

shutdownHooks So, Availability is no longer application and provoke Not implemented.
ensured. Threat: DoS. inconsistence behaviour
Allow the code to add or remove
existing threads |n5|d_e a group o&JT(Sranting this permission may allow
threads. It also permits to controan attacker to control the Java
modifyThreadGroup mEZﬁ‘yir:hre?ﬁgi’r fo;o izi);?irggle bbxrograms that are running on yaur Not implemented.
ying brop ' Vcomputer, for instance by halting
stopping them. etc. them
So, Availability is no longer '
ensured. Threat: DoS.
A typical exploit strategy would b
Allow the code to stop a thread of Branti . . to stop one thread of a ja
. ranting this permission may allow - " .
java program. application in order to crash
A . an attacker to stop the JaVFl )
So, Availability is no longer : ndeed, they are often many threads
stopThread s programs that are running on yaqur "~ ) L
ensured. Threat: DoS. . running for a single application.
) . computer, or at least disrupt th«al.f_ e
Note: Thread.stop() is deprecat S haviour hey are closely bound: if one crash
because it is unsafe. ' or do not complete its job, the ent
program will, at least, misbehave.
Allow the code to interrupt and
rSeosumAeVZitIZLeil?td ofig Janvoa plrggraer:]Granting this permission may allow
. ' y 98" an attacker to stop temporally the .
modifyThread ensured. Threat: DoS. Not implemented.

Note: Thread.suspend()
deprecated because it is unsafe (
of deadlocks among others).

iSJava programs that are running
YRUr computer.

on

getProtectionDomain

Allow the code to obtain the curre

nGranting this permission allows 3

ProtectionDomain. Using th

eattacker to know your securif

AN

y Not implemented.

18



getPermissions() method, the cadmnfiguration and to use that
obtains information about theprepare an attack in a better way.
security policy for various cod

sources. This information may be

used to help the hacker in a futyre

attack.

So, Confidentiality is no longer

ensured. Threat: Espionage.

to

java.security.SecurityPermission

Action

Severity User-friendly hint

Exploit code comment or Exploit
Strategy

insertProvider.{provider
name}

A malicious code can add |a
provider (at runtime not
permanently). A provider represents

trustworthy security algorithms and

key generation. Granting this permissio
So, the SystemManager won't cheaompromise secure connection.
the authenticity of the future
algorithm.

So, Integrity is no longer ensured.
Threats: fool users.

Not implemented

removeProvider.{provider
name}

A malicious code can remove |a

trustworthy provider thus attack théf you grant this permission, your

availability of the application application can change the way
because it could not encrypt
decrypt cipher with the goodof your messages
provider. inconsistent.

So the availability is no longer

oencrypt your data. Thus, the content
would be

Not implemented

19




ensured if the software wants to use
the removed provider
Threads: DoS.

Exploit strategy: You can add
A malicious code can set other temporally additional information t
1parameters (key, properties) of at you grant this permission, youra provider. This information can be
existing provider. It is an Integrityapplication can be able to changese to cipher in another way. The
attack. the way to encrypt your data. permission blocks the call of the
Threat: DoS. method setProperty(string s, string
t) of the class Provider.

(@)

putProviderProperty.{proviq
er name}

A malicious code can remoye
parameters (key, name) of

2| : .
removeProviderProperty.{grexisting provider. i you grant this permission, yoyr

ovider name) So, the availability is no Iongerapplication can be able to change Not implemented.
enéured the way to encrypt your data.
Threat : DoS.

A malicious code can remove the
properties of a provider ad
clearProviderProperties.{propreviously during the runtime.

Some softwares place at runtime
qf you grant this permission, yoursome additional information about a

vider name} So. the availability is no lon E)rapplication can be able to changgiven Provider. These information
enéured y 9%%the way to encrypt your data. can be cleared by the method clear()
Threat: boS of the class Provider.

Allow the code to modify the
information stored about an Identity
(person or company). Granting this permission allows the
A malicious code may corrupt thixode to change the information
setldentitylnfo information to deny its access or [tavhich describes the contacts you |do Not implemented
fool users. business with. This could cause

So, Integrity and Availability are nptrouble in your future trades.
longer ensured.
Threats: fool users.

setProperty.{key} A malicious code can set a saguricranting this permission allows the Not implerteeh

20



It is not a persistent change.
Applications can be fooled if the
security properties change.

So, Integrity is no longer ensured.
Threats: fool users.

property. It works only at runtime.code to change security properties.

getPolicy

This permission allows the software
to know the policy of the security

manager. This permission is rot
dangerous If there are no other
PErMISSions gra_mted beca S&ranting this permission allows tt
malicious codes will not be able tQ

send it (SocketPermission) or Wrtéelppllcatlon to know if it can d

it on a file (FilePermission) for This could help a hacker to prepd

instance. However it still can he Pun attack against vour svstem
hacker to find flaws in the security 9 y y :

policy.

So, Confidentiality is not granted
anymore.

Threat: espionage.

ne

D : .
. It shows the list of the permissio
Something bad on your computer. . .

X n%ranted in the current policy.

createAccessControlConte

Allow the code to create an
AccessControlContext. Using the
associated DomainCombiner and
ProtectionDomain, the code will
able to get the permissions
ssociated with the curre
rotectionDomains in the vario
Threads running.

A malicious code may use thi
information to optimize an attack or
to collect them (if SocketPermission

ode to obtain information about t
current security configuration. Th
S

could help a hacker to prepare
Sattack against your system.

X

is also granted).

eGranting this permission allows the

ne
IS
an

Not implemented

21



So, Confidentiality is no longeg
ensured.
Threat: espionage.

-

getDomainCombiner

Allow the code to access the curre
DomainCombiner
ProtectionDomain.

A malicious code may read the

permissions granted for the conte
So, Confidentiality is no longeg
ensured.

and

2Nt

]code to obtain information about t
current security configuration. Th
t.
could help a hacker to prepare

attack against your system.

-

Threat: espionage.

Granting this permission allows the

ne
IS
an

Not implemented.

java.io.FilePermission

Exploit code comment or Exploit

Action Severity User-friendly hint Strat
Allow to read file. If the read file
contains important information, treG . . —
. . . Granting this permission allows the
malicious code can get it. This . .
. code to read your documents anbhe exploit code reads the five fif
read permission protects the

confidentiality.
So, Confidentiality is no longe

rinformation

ensured. Threat: espionage.

possibly find some confidentiallines of a given file.

22

St



java.net.SocketPermission

Action

Severity

User-friendly hint

Exploit code comment or Exploit

Strategy

listen

Allow the code to create a sock
and wait for
distant hosts. This permission is 1
sufficient to accept this connectiq
(cf. accept). This permission
necessary on server-side but

sufficient to settle a client-server

mechanism.

Alone, this permission cannot |
used by a hacker to pirate the usé
computer.

connections from

et

DI
istant computer (but not to acce
ﬂi. There is no direct danger

grant this permission, except if yq
) ealso grants the “accept” permissio

Br's

code to wait for a connection from a

S

N
C

D

>

n

1% . . . and waits for a connection. If no
ranting this permission allows the

1
18
aunched because
permission
permission to wait for a connectio

The exploit code shows a server-

ide which creates a ServerSocket

onnection comes from a client, the
xecution runs  without any
roblem. If a client connects on the
iven port, a security exception |is
the “listen”

only gives th’e
n

ot to accept it.

resolve

Enable the use of DNS service. T

permission is implied when usirq

the other SocketPermission. It
dangerous only if the malicioy
code can also force the utilisation

“éranting this permission enabl
ihe code to obtain the netwo
IS :
address of your computer in t
%Eternet. There is no danger to gr3
This permission.

the hacker's DNS server.

eS

rkhe implemented code uses the
W®NS service to convert a hostname
amto an IP.

23



java.io.SerializablePermission

Action

Severity

User-friendly hint

Exploit code comment or Exploit
Strategy

enableSubclassimplementati

Allow the code to override th
default implementation of th
serialization and deserialization

object.
A malicious code may corrupt th
data during serialization @

pdeserialization, access confident
data or simply remove the conte
of the object. It may be ver
harmful to the user/company.

So, Confidentiality, Integrity an

Threats: espionage and fool user

:

Availability are no longer ensured.

oGranting this permission allows tf
code to modify the way data

fin a serialized form) or sendin
igNote: in a serialized form) on

yyour Internet connections). It
dangerous because your data
dbe lost or corrupted.

5.

grocessed before its storage (Nate

mtommunication channel (e.g. on

An exploit strategy would be t
override the writeObject an
! readObject methods (c
ie&)bjectOutputStream an
' )bjectinputStream) usin
WriteObjectOverride an
greadObjectOverride respective
@rhese latter methods will be call
instead of the original ones. Insic
an attacker can modified the dd

can o e
Before serializating/deserializatir

—+

mu

or shifted bytes of the given obje
to write/read, thus corrupting it.

0
d
f

d
9
0|

y.
ad
e,

aita
"9

it. For instance the hacker may add

enableSubstitution

Allow the code to substitute th
object to serialize/deserialize |
another. The
serialization/deserialization proce
used is the default one; only t
replaceObject and resolveObje
methods are re-implemented.
A malicious code may corrupt th
data during serialization @

data or simply remove the conte
of the object. It may be ver

deserialization, access confidenti@langerous because your data

e
py
Granting this permission allows tf
ssode to substitute data by fake
hdangerous one before its stors
2¢Note: in a serialized form) g
sending (Note: in a serialized forn
@®n a communication channel (e
ron your Internet connections). It

rie lost or corrupted.
y

harmful to the user/company.

The exploit code shows how
neeplace each String object
a@erialize by a fake other one.
idarst, the code serializes the stri
r*HELLO WORLD !”. During the
nyerialization process (the defa
gne), the string is replaced |
iISHACKED during serialization!!".
cdhen, the code deserializes {
object and reads it to prove that
is this last value that was serialize

he
it
2d.

24



So, Confidentiality, Integrity an

Availability are no longer ensured.

Threats: espionage and fool user

=N

UJ

javax.net.ssl.SSLPermission

Exploit code comment or Exploit

Action Severity User-friendly hint Strategy
Allow the code to access the
context of an SSL session. |A
session may gather several sequre
connections. Granting this permission allows the
Given the session, a malicious cqdmde to control the context of [&he exploit code retrieves tf
. can obtain information about thesecure connection you opened. It BSLSessionContext on
getSSLSessionContext . , , : . .
various connections (id, ciphedangerous because It may make |tkennection opened via
type...), invalidate the sessiongonnection inconsistent 0ISSLSocket.

change the timeouts...etc.
So, Confidentiality, Integrity an

Avalilability are no longer ensured,

Threats: DoS.

untrustworthy.
d

e

25



java.sql.SQLPermission

Exploit code comment or Exploit

Action Severity User-friendly hint Strategy
Allow the call of
j avax. sql . Dat aSour ce
'oiﬁalég?iv\ghéggi Dat asjoi\l’rac)(e"sql' An exploit strategy would be to
set LogWiter, and develop a servlet that uses| a
j avax. sql . XADat aSour ce Allow this permission permits tpdatabase connection and then
setLog .setLogWiter javax.sql show connections logs of all thenables the logs. Finally, the
(server side) These functions are used in servietdients of your database. It can alsservliet would display all the
to log database connections. On tiséow their login/password. connection traces. The login/
server side logging allows to saye password used to connect to this

passwords or usernames. This i
hindrance to data confidentiality.

S a

database may be in the logs.

26



java.net.NetPermission

Action

Severity

User-friendly hint

Exploit code comment or Exploit
Strategy

setDefaultAuthenticator

Allow the code to customize th
mechanism that handles t
opening of an URL which i
protected by a login/passwo
(.htaccess).

A malicious code may create
authentication mechanism th
keeps trace of the login/passwa
entered by users. Then, th
information may be used to acce
confidential data or to damage t
user’s system.

However, without othe
permissions, like FilePermission
SocketPermission, th
login/password collected won'’t b
easily retrieved by the hacker.
So, Confidentiality and Integrit
are no longer ensured.

Threats: DoS and espionage.

e

U)

rd

an
at
rd
liSGrantin thi iSSi '

We g this permission gives th

hetapplication the ability to retrieve

or

e (.htaccess). It implements its ow|

he password you write in a form.

The exploit code creates a new
Authenticator and sets it as the
default authenticator. This new
authenticator displays the content
of an URL protected by a
login/password mechanism

O 5

way to ask for the login/passwor
and processes them
(getPasswordAuthentication). Th
code may modify or store this
information. However, this exploi
code directly returns the
login/password as a
PasswordAuthentication object.

t

requestPasswordAuthenticati

D

Allow the code to ask the user f
his password. Because the ca

handles this procedure, it may stea

is information by storing o
sending it after (requir
FilePermission of

or

:Eranting this permission allows tf
code to ask you your password g
keep it.

-
r

D
-

ne

nd Not Implemented.

27



SocketPermission).

So, Confidentiality is no longe

ensured.
Threats: espionage.

=

java.awt.AWTPermission

Exploit code comment or Exploit

se

Action Severity User-friendly hint
Strategy
Allow the code to take control of
the graphics events on whole the
system.
A malicious code may be able tdranting this permission allows the
artificially move the mouse and useode to control the graphics events
the keyboard. It can also stop theénouse, keyboard, and screen) o, .
. . . T e exploit code moves the mou
createRobot user from using these deviceshe entire system. This is very, ;
) ._10n the screen following a square.
Finally, a robot may read thedangerous because a malicious
screen and copy it as |&ode can use that to control yqur
Bufferedimage (screenshot). computer.
So, Confidentiality and Availability
are not ensured anymore.
Threats: espionage and DoS.
Allow the code to take control of
;he "Cgtrii;r)]hlcs events in  the The exploit code adds
pplication. Granting this permission allows thé\ctionEvent (like a click on a
A malicious code may access the
1 code to control your mouse anthutton) to the AWTEventQueu
accessEventQueue events currently under process 38

modify or delete them. Th
resulting  behaviour of th
application would be inconsistent

lr]<eyboard in Java application

gThen, they may misbehave.

So, Confidentiality, Integrity an

8}

an

sSo, the application will consider
the user has really clicked on
button.

28



Availability are not ensure
anymore.
Threats: espionage and DoS.

29




L ow severity

java.lang.RuntimePermission

Action

Severity

User-friendly hint

Exploit code comment or Exploit
Strategy

gueuePrintJob

Allow the code to print, by addin
new jobs in the printer's queueThis permission allows the code
Hackers can use that to wastese your printer. A hacker wou
paper, print confidential data obe able to overload your printer |
simply deny the user access to th@inting thousands of papers.
printer.

tdhe code put 100 pages in t
dorinting queue, resulting in usirn

the users waiting for availability.

g

oyhe printer’'s resources and making

java.security.SecurityPermission

Exploit code comment or Exploit

Action Severity User-friendly hint Strategy
Allow the code to access the value
of the s_ecurlty properties of treGranting this permission allows the
Java environment. o . . .
- code to obtain information abouihe exploit code displays th
A malicious code may not be abl e security configuration of yoursecurit ropert ‘login
getProperty.{key} to affect directly the behaviour ¢ y 9 Y y property g

Thus,

required

other
in order

the application but may use th
information to optimize the attac
permissions

to do

igomputer. This permission is n
directly a danger for the security
your system.

A\

r

real

otonfiguration.provider written ir
othe file “java.security”.

e

30



damage.
So, Confidentiality is not ensure
anymore.

Threat: espionage.

d

printldentity

Allow the code to display
information about a given ldentit
(person or company): its name, if
IS trust or not...etc.

A malicious may retrieve

Y
it
Granting this permission allows t

rcode to obtain the informatio

confidential information about thewhich describes the contacts y

Identity objects stored. Withot
other permissions (Socket, File.
this permission is not ver
dangerous.
So, Confidentiality is no longe
ensured.

ido business with. Granting th
Jpermission is not  directl
ydangerous, except if the code ¢
also connect to distant computer.

=

Threat: espionage.

ne
n

is

an

Not implemented

31




java.awt. AWTPermission

showWindowWithoutWarnin
gBanner

In applet, a warning banner always
as

tells the user that the window w.
created by an applet and not by

application. It may be important for
a

applets have not the same defau

a user because applications

rights. This permission allows the

code to not to display this banner

Using this trick, a malicious code

may fool users.
So, Integrity
anymore.
Threats: fool users.

iS not ensure

an

code to pass an applet window
as an application window. Hacke
can use this trick to fool you.

rZﬁlranting this permission allows the
DFf
rs

Not implemented.

javax.sound.sampled.AudioPermission

Action

Severity

User-friendly hint

Exploit code comment or Exploit
Strategy

record

Allow to record sounds from
computer, thus, permittin
eavesdropping. When you recg
audio, the system use mixers.
many mixers are opened, t
computer can become
because mixers use

resources. It is even
dangerous with file or
permissions.

lots
mo
socké

and th

slow

a

s
rd

|(fSranting this permission allows tt
he

code to record sounds. You can
O(?avesdropped and the performat

i é’f your computer can be affected
bt

1)

So, Confidentiality

]gbé possible way to exploit thi

o5

ermission is for eavesdroppif
user’'s conversations.

[

9

32



Avalilability are no longer ensured,

Threats: espionage and DoS

This permission allows to play

audio on the computer. When y
play audio, the system uses mixe

DU

. r&ranting this permission allows th&he exploit code launches ma
If many mixers are opened, the

ny
nd.
the

la computer can  become SIONcode to play sounds. Thehreads that play the same sou
play becapuse they use lots of resource ggerformances of your computer camhus, all these threads overload
The availability is no longer e affected. Users cpu.
ensured.
Threat: DoS.
java.sql.SQLPermission
Action Severity User-friendly hint Exploit code comment or Exploit
Strategy
Allow to call the function
DriverManager.setLogWriter that
traces (in a file or in the console)Allow this permission permits tp
setLog . . The code shows the logs when
(Client side) connections and queries to thesave your database connecto(ponnects to a MySQL database.

database. It does not show a

passwords or usernames;

njogs.

33



java.util.PropertyPermission

Exploit code comment or Exploit

Action Severity User-friendly hint Strategy
Allow the code to set the properties
of the system, for example the QS
version and architecture, the user
directory, the endian type, the Java .
version or the file encoding. Granting this permission allows theTrhoe e?txpl\(/)gluggd((eweshslvsvs arar]:(ter:j
A malicious code may change theode to modify some configuraticj)hep reyad ermission fo% trve

write value of these properties to makmformation of your computer an demonstratioﬁ) and then modify the
the system unstable or to modifthus affect the execution of th%alue of the 0 grt
the initial behaviour of theapplication. “user lanauaae” from “fr” tg ‘.e%,, y
application. -anhguag '
So, Confidentiality and Integrity
are not ensured anymore.
Threats: fool users and DoS.
Allow the code to read the value pf
properties of the system. . Granting this permission allows the
A malicious code may use this S .
. . .. |code to obtain information aboutr .
information to prepare or optlmlze[h , : he exploit code shows a few
. e configuration of your computer. ) :

read its damage on the computer, rproperty values, including the QS

simply to spy the characteristics
the system.

So, Confidentiality is not ensured”S®e™

anymore.

8’1:& hacker may use this informatig
to prepare an attack against y(

flame and the user directory.

34



java.util.logging.LoggingPermission

Exploit code comment or Exploit

Action Severity User-friendly hint
Strategy
The exploit code creates a loggi
Allow the code to take control of mechanism (Logger and
the logging configuration. ConsoleHandler) with the level
A malicious code may be able tto INFO. So, only messages with t
remove some logging mechanisms levels SEVERE, WARNING an
in order to hide what it has done.| It INFO will be logged. The cod
can also access and modify th@&ranting this permission allows thdirst shows that SEVERE and
control existing mechanisms and add neweode to log/trace what you ardNFO messages are rea

ones.
So, Confidentiality, Integrity an

Availability are not ensure
anymore.
Threats: espionage and fqol

administrator.

doing in the application.

L

8|

The code “removed” informatio
which could have been useful f

tracking issues.

displayed and FINE are not. Then,
the code modifies the level of the
logger to SEVERE. Thus, INFO
messages are not logged anymore.

ly

n
or

35



