
TDDC03 Projects, Spring 2005

Alternative Xbox copyright protection designs

Albert Holm Karl-Johan Karlsson

albho302@student.liu.se karka728@student.liu.se

Supervisor: Tina Lindkvist

Alternative Xbox copyright protection designs

Albert Holm

albho302@student.liu.se

Karl-Johan Karlsson

karka728@student.liu.se

Abstract

The Microsoft Xbox is a successful gaming console

that attempts to include strong copyright protection. We

present an overview of the copyright protection schemes

and their weaknesses and discuss possible alternative de-

signs for them. We conclude that while the Xbox design is

technically flawed, and may be impossible to correct, it is

economically quite sound.

1. Introduction

Microsoft released the Xbox in November 2001 into a
game console market totally dominated by the Playsta-
tion 2. The Xbox was designed as a slightly modified
PC, which probably contributed to its low end-user
price. These factors made it attractive to people who
wanted to use it as a generic PC, who were backed up
by hardware hackers who wanted to learn about Mi-
crosoft’s modifications.

To protect the games revenue stream, Microsoft in-
cluded copyright protection measures with the intent
of only allowing the execution of approved code. We
present an overview of these measures, and how they
were broken, in section 2.

In section 3 we discuss alternative designs for the
Xbox copyright protection systems.

2. Summary of Xbox copyright protec-

tion measures

2.1. Goals

Being a PC, much of the Xbox can use cheap, off-
the-shelf components. Some of the special components,
such as the southbridge and GPU, have also been mod-
ified to be used in PC:s. However, the Xbox is still sold
at a loss of about $100 per unit [9, 16], to keep the
price on par with that of the Playstation 2 [4, 7].

To make up for this loss, Microsoft needs to sell
games as well as hardware, so they have a strong incen-
tive to prevent illegal copying. At the same time, the

copy protection system must allow the production of
new hardware revisions that are still compatible with
old software, and not put too great a burden on the de-
velopers.

2.2. Design

Viewed from the outside, the Xbox security system
seems well thought-out. Binaries are signed, so copy
protection measures within games cannot be removed,
and they contain a list of which media they are al-
lowed to reside on, so you cannot e.g. copy a game from
a DVD to a CD-R and run it. But viewed from inside
this system is revealed to rest on a very shaky founda-
tion, rife with possibilities for attacks on the layer be-
low.

Xbox Live, Microsoft’s online gaming service, im-
plements checks in addition to those made by the sys-
tem itself to see if the connecting Xbox has been mod-
ified. Nothing conclusive has been proven about how
these work, but one theory that has many followers
is that Microsoft records a unique identifier from the
hard drive in each Xbox the first time it is connected to
Xbox Live, and if that ever changes, that Xbox is not
allowed to connect to Xbox Live again [12]. Changing
the hard drive is popular, since the original one is very
small (8 GB) and with a larger one copies of games can
be moved over the network and stored on the drive, in-
stead of on burned DVD:s.

Another problem with changing the hard drive is
that it is locked using the standard ATAPI security ex-
tensions [21], making it impossible to read any data
from it until a password has been presented. Defeat-
ing this lock once, to be able to look at and modify the
contents, is easy—let the Xbox unlock the drive and
then, without disconnecting power, swap the IDE ca-
ble from the Xbox to a PC [2]. To make the hard drive
work in an Xbox, e.g. from a modchip, the password
is required. This password is calculated by an SHA-1
hash of several serial numbers and other unique iden-
tifiers from hardware inside the Xbox, encrypted with
RC-4 [16]. Since the other security mechanisms must al-
ready be broken before you have to worry about access-

1

ing the hard drive, this obscurity provides no extra se-
curity, as the values used in the hash and the RC-4 key
are easily found from a disassembly of the boot load-
ers.

Games have to be compatible with all system revi-
sions, so the outside view has not changed, but there
are currently eight revisions of the underlying hard-
ware and security systems [8]. The greatest difference
is between revisions 1.0 and 1.1, where most of the se-
curity system changed, while later revisions have only
minor hardware differences.

2.2.1. Revision 1.0 This hardware revision, the one
originally attacked by Andrew Huang [13], was pro-
tected mostly by security through obscurity.

Since the processor is almost a standard In-
tel Pentium-III Celeron, the details of its boot pro-
cess are easily obtained from the architecture manuals
[18]. The memory at the address of the reset vec-
tor, where the processor begins execution, was traced
to a flash chip on the motherboard, which was des-
oldered and put into a ROM reader to extract the
code.

The very first code block executed, 512 bytes at
the very top of the address space, is a decoy, contain-
ing subtly incorrect code. Rewriting that area in the
flash chip has no effect, so the code must be stored
someplace else. Checking which buses contained the
secret data pointed towards the real boot ROM be-
ing hidden inside the MCPX (southbridge) chip. [14]
discusses several alternative methods for retrieving it,
but the one that was finally used was tapping the Hy-
perTransport bus between the northbridge and south-
bridge chips. This bus has few (ten) signals, but higher
clock frequency than common logic analyzers can han-
dle (200 MHz DDR), so Huang built a custom circuit
board with an FPGA to be able to tap, decode and
record the traffic.

Reverse engineering of the recorded code showed
that it was decrypting the boot loader, found in the
flash chip, with RC-4 using a 128-bit key, and verify-
ing that a magic number in the decrypted code cor-
responded to a hardcoded value. Since RC-4 [20] is a
symmetric cipher, knowing the key allows anyone to
create a new boot loader, encrypt it, write it to flash,
and have the Xbox execute it.

An even easier way of replacing the flash contents is
through the LPC bus [17], an approach that has been
used by almost all modchips to date. It uses a fea-
ture that seems to have been used for testing assem-
bled Xboxes in the factory, but is still present in the
shipped hardware.

The LPC bus is intended for connecting low-speed
peripheral devices in a simple way, and so has very few

connectors (the version used on the Xbox has 15). It
was discovered that, by connecting one signal on the
flash chip’s data bus to ground, the address space for-
merly mapped to the flash chip was now mapped to the
LPC bus instead, so the boot loader, kernel and jam
tables are read through the LPC bus. This is proba-
bly used to run testing software on newly assembled
Xboxes, but can also be used to run a modified boot
loader and kernel image that does not perform any
checks on the binaries it runs later, allowing play of
illegally copied games.

Figure 1. Chain of trust, flow of execution andat-

tack points in system revision 1.1.

2.2.2. Revision 1.1 With the introduction of revi-
sion 1.1 in the autumn of 2002, Microsoft changed the
security system in a few fundamentally different ways.
As in revision 1.0, the real boot ROM was stored in the
MCPX chip. Because of the restriction to 512 bytes, a
full implementation of RSA or similar algorithm was
not possible. Instead, a part of the boot loader in
the flash ROM was hashed using the Tiny Encryption
Algorithm [22] in Davies-Meyer mode [20] and com-
pared to the reference value stored in the MCPX ROM.
The intention was that once the flash boot loader had
been verified to be correct, the more space-consuming
public-key implementations stored there could be used
for verifying the integrity of the rest of the flash ROM.

The flash boot loader would then continue to ver-
ify the signatures of various parts of the flash. Among
these parts is the so called second boot loader that con-

2

tains the functionality to decrypt, decompress and ex-
ecute the kernel and the kernel itself.

Part of the boot ROM is an interpreter for instruc-
tions on how to initialize the hardware. These instruc-
tions, so called jam tables, are stored in the flash mem-
ory, but are not checked for validity until in the flash
boot loader, long after they have been used. As the in-
terpreter allows writing to any memory address, it is
possible to use them to write instructions to RAM.
This was used by Andy Green [16] to write instruc-
tions at a specific memory address that would trans-
fer the flow of control back to another part of the flash
memory, where code had been loaded in advance.

The Tiny Encryption Algorithm has a weakness in
its key schedule which makes it possible to get one con-
trolled change in one bit at the price of one uncontrolled
change in another bit in every 64-bit block [19]. This
was used to modify the very beginning of the flash boot
loader to contain a jump to the memory location writ-
ten to by the jam table interpreter instead of the in-
tended location.

Other parts of the flash could then be rewritten to
get the desired functionality of the boot loaders and
the kernel as the code to verify them will either be re-
moved or never executed.

2.2.3. Revision 1.6 Introduced in March 2004 [8],
revision 1.6 does not have writable flash memory. The
standard modchips are not affected by this, since they
use the LPC bus to take control of the motherboard
flash address space and divert it to their own flash
chips. There is also a class of pure software modifi-
cations that are not affected [6]. These use series of
buffer overflow attacks to install and run a loader pro-
gram on the hard disk, which will then be able to load
unsigned programs. Both these modifications can be
easily reversed, so the Xbox can still be used to play
online games through Xbox Live.

The only category of modifications that is hindered
by the removal of the writable flash is the so called
hardware method [3], that uses buffer overflow attacks
to load a program that overwrites the motherboard
flash. But this method is very hard to reverse (since the
original flash contents are hard to find), and is there-
fore only useable to permanently turn the Xbox into a
Linux computer or to play games without using Xbox
Live.

2.3. Summary of problems

Security through obscurity. Most of the security
in revision 1.0 came from obscurity, protected by
the perceived difficulty of tapping the fast buses

on the motherboard. But security through obscu-
rity is ultimately futile, especially when the adver-
sary has complete control of the hardware in ques-
tion (see e.g. chapter 14 of [11]). Some of this is
replaced with security through cryptography in re-
visions 1.1 and above, but some remain (e.g. the
hard drive lock described in section 2.2), provid-
ing no real benefit, only more problems in manu-
facturing.

Time-of-check-to-time-of-use. An interesting twist
on the time-of-check-to-time-of-use problem can
be seen in the jam tables in revision 1.1. They are
interpreted by the boot ROM in the MCPX, but
are not hash checked until the flash boot loader.
If you do not intend to use the original flash boot
loader, the jam tables will never be checked.

Cryptographically weak hash functions. The
Tiny Encryption Algorithm, used in the MCPX
boot ROM to verify the flash boot loader, is
not collision resistant. This means that the flash
boot loader can be modified but still be ac-
cepted. Later boot stages use SHA-1 hashes
and RSA signatures, and are thus not vulner-
able in themselves, but when the first step is
broken later security doesn’t matter.

Debug facilities left in shipped hardware. The
LPC bus allows loading an alternate firmware
with solderless touch-contacts. There are also
probe points on some of the buses, making them
easy to find and tap.

Signatures guarantee authenticity, not funtionality.

This is a common problem in the mental model
people have of cryptography. Retail software on
DVD:s is signed, but the signature only says that
it’s the same software that Microsoft has seen be-
fore, not that it functions correctly. For example,
the game MechAssault has a buffer overflow vul-
nerability that is used to run the installer for
Xbox Linux [5].

3. Design alternatives

The decision to use a well known platform and add
only minor changes has both advantages and disadvan-
tages. Among the advantages is that most game devel-
opers already know the specifications and how to get
the most out of it already from the games released early
in the history of Xbox. Of course this also made hard-
ware hackers know just as much about the platform,
which made it easier to find out about the differences
that make an Xbox unique. Using off-the-shelf compo-

3

nents makes for a cheap design, but in this case the
chosen one has known problems, e.g. buffer overflows.

The specific problem of buffer overflows has both
hardware [10] and software [1] solutions available, but
the hardware solution requires modified processors,
which would have made the console even more expen-
sive, and the software solution extra execution time,
requiring a faster and more expensive processor.

One reason for the heavy use of copyright protec-
tion in the Xbox is that the hardware is sold at a loss,
and Microsoft thus needs every customer to buy sev-
eral original games to break even. Selling the hardware
at break-even prices would obviate the financial need
for more extreme measures, and as long as there is
still a hardware modification required to circumvent
the copyright protection, roughly the same set of users
will attempt to circumvent it. There is a great mental
hurdle involved in actually opening the box, and that is
probably what is significant for the mass market. Cus-
tomers who are ready to pick up a screw driver and
soldering iron to take control of their hardware prob-
ably won’t care much if it takes an hour or a week to
do it.

Selling at break-even prices would, however, have
made the current design about $100 more expensive
than the Playstation 2, and since the Xbox was Mi-
crosoft’s first inroads into the console market they
might not have been able to gain as much market share
as they wanted at that price level.

From revision 1.1, Microsoft uses the Tiny Encryp-
tion Algorithm to verify the integrity of the flash boot
loader. Later stages in the boot process use RSA signa-
tures of SHA-1 hashes. It would have been much harder
to change the contents of the flash chip if every piece
of code that exists outside of the MCPX chip had its
signature verified with RSA. On the other hand, that
would probably result in the need of a larger, and there-
fore more expensive, MCPX.

Even this solution would not not lead to total secu-
rity, since it would still be possible (albeit very expen-
sive) to modify or exchange the MCPX chip.

Physically getting to chips and buses on the moth-
erboard could be made more difficult by coating the
board and components with epoxy after testing. This
would lead to higher maintenance costs, since repairs
would then be as hard as physical attacks, probably
leading to units being replaced instead of repaired. Pro-
tection would still not be complete, since there are sol-
vents and milling machines that can remove such coat-
ings.

Removing the active LPC bus would not have made
the design more resistant to professional, directed at-
tacks, but would have necessitated a more complicated

solution for taking over the flash address space. The
Milksop device [15] is one such solution, but it car-
ries a cost of over $300 in single-item quantities. That
almost all modchips to date have used the LPC bus
points to its importance in taking modifications to the
mass market.

4. Conclusions

When developing the Xbox, Microsoft seems to have
tried to make it “secure enough”. They knew of sev-
eral more secure ways to reach their goals of controlling
which pieces of software are running and from which
media they are executed, but did not see or care about
the threats.

From a technical point of view, there are no per-
fectly secure solutions—it is only possible to influence
the cost required to break the security system. From
an economic point of view, a balance between the cost
of security and lost revenue due to illegal copying is de-
sirable.

We think Microsoft is close to achieve this balance
since they are about to release their second genera-
tion game console, but a simple way to get even closer
would be to remove the LPC bus. If the bus is cur-
rently used after the unit is delivered, e.g. when servic-
ing, that use would disappear, but the increased diffi-
culty and cost in producing modchips would probably
more than make up for this.

References

[1] 2003. 〈URL:http://pax.grsecurity.net/docs/pax.
txt〉. Design of the PaX system.

[2] Hard disk hotswap HOWTO. Xbox Linux Wiki,
2005. 〈URL:http://www.xbox-linux.org/Hard Disk

Hotswap HOWTO〉.

[3] Hardware method HOWTO. Xbox Linux Wiki,
2005. 〈URL:http://www.xbox-linux.org/Hardware
Method HOWTO〉.

[4] Playstation 2. Wikipedia, 2005. 〈URL:http://en.
wikipedia.org/wiki/PlayStation 2〉.

[5] Software method HOWTO. Xbox Linux Wiki,
2005. 〈URL:http://www.xbox-linux.org/Software
Method HOWTO〉.

[6] Version1.6warning. XboxLinuxWiki, 2005. 〈URL:http:
//www.xbox-linux.org/Version 1.6 Warning〉.

[7] Xbox. Wikipedia, 2005. 〈URL:http://en.wikipedia.
org/wiki/Xbox〉.

[8] Xbox versions HOWTO. Xbox Linux Wiki, 2005. 〈URL:
http://www.xbox-linux.org/Xbox Versions HOWTO〉.

[9] P. Abrahams. Profile Microsoft iBox [sic]–market re-
quires hard work and high investment. Financial
Times, Sept. 2001. 〈URL:http://specials.ft.com/
ftit/sept2001/FT39KPD96RC.html〉.

4

[10] Advanced Micro Devices. AMD64 Architecture Pro-
grammer’s Manual Volume 2: System Programming,
2005. 〈URL:http://www.amd.com/us-en/Processors/
TechnicalResources/0,,30 182 739 7044,00.html〉.

[11] R. Anderson. Security Engineering. John Wiley & Sons,
2001.

[12] D. Becker. Is Microsoft using ’Halo 2’ to thwart Xbox
hackers? CNET News.com, Nov. 2004. 〈URL:http:
//news.com.com/Is+Microsoft+using+Halo+2+to+

thwart+Xbox+hackers/2100-1043 3-5449160.html〉.

[13] A. ”bunnie” Huang. Keeping secrets in hardware: The
Microsoft Xbox case study. AI Memo 2002-008, MIT AI
lab, 2002.

[14] A. ”bunnie” Huang. Hacking the Xbox. No Starch Press,
unlimited edition, 2003.

[15] A. Green. The Milksop project. 2004. 〈URL:http://
www.warmcat.com/milksop/milksop.html〉.

[16] A. Green, M. Steil, and M. Meriac. Its [sic] my
box: how the hardware and software traps in the
Xbox were beaten and Linux installed. Presenta-
tion at the 19th Chaos Communication Congress,
2002. 〈URL:http://www.ccc.de/congress/2002/
fahrplan/event/399.en.html〉.

[17] Intel Corporation. Intel Low Pin Count (LPC) Inter-
face Specification, 2002. 〈URL:http://www.intel.com/
design/chipsets/industry/lpc.htm〉.

[18] Intel Corporation. IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 1: Basic Archi-
tecture, 2004. 〈URL:http://www.intel.com/design/
pentium4/manuals/index new.htm〉.

[19] J. Kelsey, B. Schneier, and D. Wagner. Key-schedule
cryptanalysis of 3-WAY, IDEA, G-DES, RC4, SAFER,
and Triple-DES. InAdvances in Cryptology—CRYPTO
’96 Proceedings, pages 237–251. Springer-Verlag, 1996.

[20] B. Schneier. Applied Cryptography. John Wiley & Sons,
second edition, 1996.

[21] T13 Technical Committee. AT Attachment with Packet
Interface—6, 2001.

[22] D. J. Wheeler and R. M. Needham. TEA, a tiny en-
cryption algorithm. Lecture Notes inComputer Science,
1008:363–??, 1995. 〈URL:http://citeseer.ist.psu.
edu/article/wheeler95tea.html〉.

5

