
TDDC03 Projects, spring 2004

Applied Security Auditing

A practical study on analysis guidelines for written code

Magnus Holmgren, Wolfgang Mähr

(magho442|wolma000)@student.liu.se

Linköpings universitet

May 10, 2004

Project no. 010

Supervisor: John Wilander

Applied Security Auditing

Magnus Holmgren Wolfgang Mähr

magho442@student.liu.se wolma000@student.liu.se

Abstract

As security auditing and security testing always rely

on the experience of the involved persons, here we de-

velop a process that should be easier to apply and that

should need less experience. This process contains six

methods, each resulting in useful criteria for testing and

auditing each. These methods are explained and then

demonstrated on a small Java web server and some ex-

amples are explained further on an open source web

server written in Pike. Furthermore, evaluations of these

methods with advantages and disadvantages are pro-

vided. In addition, an example of the resulting report is

provided.

1. Introduction

1.1. What Is Security, Why Do We Need It and

How Do We Estimate It?

Security has grown increasingly important in the field

of computer science the last years. The security of a sys-

tem says how vulnerable the system is to intentional at-

tacks. The vulnerability is usually measured in three di-

mensions called CIA: Confidentiality, Integrity and Avail-

ability. Confidentiality means that information cannot be

accessed by unauthorized users. Integrity means that valid

information cannot be changed (by accident or mali-

ciously), at least not without leaving a trace, and also that

the origin of the data is what is expected. Finally, avail-

ability means that a service cannot be limited or shutdown

by any other instance.

These confidentiality and availability demands contra-

dict each other. With the ubiquitous availability of the

Internet, we want to take advantage thereof. We want to

do billing, reservations, etc. over the Internet, we want to

consult our doctor via Internet instead of waiting for ages

in the waiting room. With our demand of ubiquitous ac-

cessibility, we are also opening our data to everybody

with access to the Internet and with the knowledge of our

access information. Through this way, a malicious person

can try to access private data from almost everywhere, but

still this access information cannot be too complicated for

users (the appropriate users) to remember and to use.

The field of computer science is not so young as it

seems. There is already now a huge amount of existing

software and working solutions available and often it is

required that some existing code is extended, integrated

or just depended on. For these cases, it is important to

know how secure and reliable this older piece of software

is. It may often occur that such an estimation is hard to do

because meaningful documentation is missing (source

code, product information, etc).

Still, some methodologies should be applicable to be

able to see possible threats and to take in account prob-

lems resulting from this integration or usage. Right now,

there are three main methods for this task: analysis tools,

security audits and security testing. Analysis tools are

programs that go through the code and try to find security

leaks (unsafe function calls, security estimations for code,

etc). Security auditing is the process to go through code

with an auditing team and trying to figure out how secure

a piece of code is. The third method is security testing, to

run the code and look for security leaks. All of these

methods are possible to be done on compiled code, but

knowledge about the interior or access to the code is an

advantage for these methods.

1.2. The Goal of This Study

This study is the result of a project on software secu-

rity for java web servers. Our goal of the project was to

analyze a web server with the help of different methods

(Threat Scheme, Attack Tree, and some other methods, all

are described later) and to report our experiences applying

these methods. With this report however, we try to shift

away from just reporting the security issues of the soft-

ware we got to work on, towards describing the general

process of doing such a security analysis. We will use the

web servers we analysed as example to demonstrate the

whole process of security auditing software. This process

is the main result of this study. In both cases, we can do

the whole process, which sometimes may not be possible,

because code or some documentation is missing. Fur-

thermore, we had to adapt various methods to be applica-

ble in the way we wanted to use them. These methods,

explained later on, are usually used in development in-

stead of analysis but their task is quite similar: finding

possible security leaks. Therefore, we try to describe the

whole process and evaluate each method.

Our motivation for this guide is also that until now

there are these three possibilities to check if some code is

secure, but the audit and testing rely a lot on experience

and knowledge. We now wanted to develop a more me-

thodical approach to find test cases and criteria for evalu-

ating the security of software. With this methodology, we

hope to provide a complete result because it is achieved

by proceeding systematically and which therefore is eas-

ier to reproduce. In addition, we hope that these test cases

and these criteria are found faster and easier than in the

less organized way. In addition, we hope that these test

cases and these criteria are found faster and easier than in

the less organized way.

As the basis of our work, we will use two books:

“Building Secure Software” by John Viega and Gary

McGraw [1] and “Writing Secure Code” by Howard [2].

1.3. Scenario

We assume for this analysis that we have a finished

product and try to evaluate the security of it. This product

should be used for internal use or should be integrated

into an application that is being developed. Another pos-

sible scenario is that we have to re-evaluate an old piece

of our software to find problems in those lines of code.

The thing that all scenarios have in common is that

neither we nor anybody else changes the evaluated code

during the evaluation. This means that even if we have

access to the code, the methods are all still applied to the

same code. This code may then be changed later on as a

result of this audit. Even if we just have the documenta-

tion and no code, we want this process to be applicable.

Therefore, it is possible that we do not use any analysis

tools but that we rely on manual testing. The developed

methodology should then help to create specific test cases

and other criteria to achieve the results.

1.4. The Tested Software

We will analyze one small web-server written in Java

(called Dahlberg) and a bigger one written in Pike (called

Caudium). The Dahlberg we will use as an example for

the whole process, while we will use Caudium for just

pointing out specific issues. Unless otherwise stated, we

always refer to Dahlberg. To understand these two web

servers, some knowledge of their basic concepts is

needed. We gathered this information from different

places in the web, namely the Java security whitepaper

[4] and the SecurityFocus advisories [5]:

1.4.1. Java

The Java platform, announced in 1995 by Sun Micro-

systems and Netscape, is more than a programming lan-

guage. Java provides a platform-independent runtime

environment and API. Java source code is not compiled

into machine code, but instead translated into a semi-

compiled form called bytecode. The bytecode is then

interpreted and executed by the Java Virtual Machine or

JVM. JVM’s exist for a large number of platforms and

provide the machine-independent environment. A set of

standard classes provide an interface to hardware and

operating system services, as well as useful functionality

usually not available across all platforms. There are no

pointers, only object variables, which can contain either a

reference to an existing object or null. This means that

buffer overflows and stray pointers causing overwritten

memory are impossible. Memory allocation and dealloca-

tion is handled automatically by the garbage collection.

The typing of the language is strong. Since all bytecode is

interpreted by the JVM, controlling what the code can do

or cannot do is relatively easy. This results in the Java

sandbox, a well-confined program space with restricted

access to the computer resources. Sandboxing is most

useful with mobile code (i.e. applets, automatically

downloaded and run when the user visits a web page) but

it can also be used with stand-alone applications like for

example the Dahlberg web server. Even though Java is a

very controlled language (lack of pointers, strong typing

of language, etc.), bugs can sneak into the code. This can

happen in the program code as well as in the JVM im-

plementations. The latter make all Java software vulner-

able. Most vulnerabilities reported in the Java Virtual

Machine are relevant primarily in the mobile code situa-

tion. For example, a early vulnerability in Netscape Navi-

gator 2.0 concerned the rule that an applet should only be

allowed to communicate with the server from which it

came, but the JVM did not check the IP address, but only

the host name, allowing an attach. Other points of failure

are the class loader, which is responsible for fetching the

proper class files when needed, and the Bugs in those

areas could render not only hosts running applets vulner-

able, but also affect server software.

1.4.2. Dahlberg

The Dahlberg web server is a very simple web server

written in Java by Per Dahlberg. It only supports the GET

method to fetch static content. It does not support any

CGI, SSI or other means of creating dynamic output. Its

most advanced feature is that it can generate directory

listings. The server handles requests by creating handler

threads processing the requests that are accepted by the

main thread and the passed forward. The configuration is

very simple and straightforward.

1.4.3. Pike

According to the Pike website [6], it is “[...] a dynamic

programming language with a syntax similar to Java and

C. It is simple to learn, does not require long compilation

passes and has powerful built-in data types allowing sim-

ple and really fast data manipulation.” What was to be-

come Pike was a hobby project at the beginning, which

later was then used by Roxen Internet Software (formerly

known as InfomationsVävarna) for their web server.

Nowadays, Pike is maintained by IDA, the department of

Computer and Information Science at Linköping Univer-

sity. Pike is a more C-like language than Java. Also, like

Python or Java, it is interpreted, not compiled. Pike pro-

grams are translated into an intermediate form and then

run, but unlike Java, this translation is done on every

invocation. Therefore, Pike is useful for scripting. It also

uses a garbage collector to relieve the programmer from

having to keep track of used memory. The data types in

Pike are the basic types int, float and string. In addition,

like in most languages except C and C++, strings are safe.

There is no way to read or write past the end of a string;

there is no way to reference an invalid memory location at

all. A slight disadvantage of Pike is that there is no lan-

guage construct like the synchronized keyword in

Java, which is used in Java to make critical parts thread

safe. A resultless search on the web for security issues in

Pike, could have several reasons: Either there are no

known vulnerabilities in Pike, or no one has found Pike

important enough to report any vulnerabilities. This leads

to the assumption that using Pike is not more insecure

than using any other language.

1.4.4. Caudium

Caudium 1.2.x is a full-fledged web server based on an

earlier version of Roxen Challenger by Roxen IS and

available under the GPL License. It is written in Pike

(except for a core library written in C), which also makes

Pike the natural choice for programming dynamic con-

tent. Still support for other languages, such as PHP, can

be added with help of a separate module. RXML, the

Roxen Macro Language, is another way to create simple

server-side scripts by writing special tags between the

HTML code. Modules provide various kinds of function-

ality and new modules can be written or installed by the

site administrator to change the behaviour of Caudium via

web interface.

2. Security Analysis

2.1. The Process of Analysis

We will take the Dahlberg Web server as the example

to work on, whereas Caudium will be used for showing

some specific issues. We will take a top-down approach

to the code, which means that we will start looking at the

application from an abstract black-box view with its in-

teraction with the environment and then we will step

deeper into the application and the code in each iteration.

In each iteration, we will first describe the applied method

theoretically, then practically apply it on our example(s)

and finally comment on the method in means of our per-

sonal experiences. We will also make personal recom-

mendations and mention ideas to these methods. The

reason for using this kind of layout for our audit is that

the process can be quit after each iteration. It should be

possible after each iteration to use fresh insights to do

testing and auditing on the software. Hopefully the results

improve by each iteration, because each iteration removes

one layer of abstraction. It should be possible to quit the

process in the middle of two methods and still get accept-

able results and criteria. As some methods need code

review, which cannot be applied on a software package

where the source code is not accessible, those methods

have to be skipped sometimes. Then, after applying these

methods to collect criteria for testing and auditing, they

can take place. Another advantage of this process is that

issues covered earlier can be omitted later because they

do not have to be covered twice. Therefore the process

should be fast. The final result should be a security report

saying how secure the product code is and which prob-

lems are hidden in the code; we will end up with such a

report for the example application.

Figure 1. Auditing process

2.2. Threat Scheme

2.2.1. The Theory Behind

This method is based on threat models described in the

book of Howard [2]. Threat models are used in the design

phase. According to Howard they are the most effective

thing to do for design. To begin with, a threat model gives

the developer a first deeper contact with the whole system

and a first glimpse on the solution. Moreover, this method

forces the developer to think about security in relation to

this problem already very early and therefore a lot prob-

lems are be found early.

Threat Schemes should do the same as threat models,

but for security analysis. Threat Schemes should help

finding some first security issues, but their main intention

is to give the reviewers an approach to the targeted soft-

ware. They should force the reviewers to think about the

environment in which the software is used and with

which it is interacting. For this Threat Scheme we just

take the first part of the threat models and focus on the

environment without looking into the application. The

closer look on the interior of this blackbox will then come

in the next step (Design Analysis).

For this first approach, we take a black-box view of

the program and model the program and its interaction

with its environment. This should be possible by looking

at the documentation of the product. Maybe some things

have to be tested (i.e. used resources) if the documenta-

tion is bad, but still this step should be applicable in any

case. In our example, we have to model how the interac-

tion works and try to think of possible problems that

could occur in each interaction. We will not decide if

these problems can occur in this specific application, but

instead we just collect as many ideas as possible. This

also means that internal problems, like input validation,

control flow and failing modes, will not be covered here,

only the possible environmental failures. In the Second

step we can then describe the problems found in the

analysis of the model. Here we should try to be as precise

as possible. This description helps us defining a possible

check in step three. This check can demand either a “code

review”, “security testing” or an “Attack Tree”. In any

way, it also makes sense to add as much information as

possible for the check here, so that this can be done easier

later on.

2.2.2. Applying the Method

Understanding of complex issues is easier by models

and diagrams and we have to think about them, when we

are creating them. Therefore, we first make a general

diagram of the environment of the software (fig.2). In

case such or a similar diagram is already present, we also

can use that one.

Figure 2. Threat diagram of the web server and
its environment

From this diagram, we can read all interactions be-

tween the software and the environment (the arrows) that

have to be tested. In the next step we can extract a list of

possible problems there (table 1 in the appendix).

With this table, we have found the first criteria for

evaluation via testing and auditing. Some problems are

marked with “Attack tree” as check which means that we

have to cover these issues detailed in the Attack Tree,

because they are too complex to be checked by a simple

check or a code review and because they can be exploited

in different ways. For example can file execution by an

attacker be achieved by buffer overflow or tampering

with the configuration. Anyway, these issues are beyond

the scope here; they are inside of the black-box, and

therefore we just note them and handle them later. The

other simpler issues have been listed here, and for those

we can give an estimate.

The last step of this test would then be to test and re-

view the code for the criteria we found before. However,

because this does not make sense right now – we do not

have any specific knowledge about the code yet – we

procrastinate these checks to the next phase.

2.2.3. Evaluation of the Method

We believe that this method gives a quite good first in-

sight into the application and its environment. It also

forces the auditor to get into first contact with the soft-

ware and the environment. It is an important point that the

environment is regarded as well when auditing the soft-

ware, because security leaks can also depend on the envi-

ronment. The exposure of security flaws usually happens

through the environment. It is possible that a user can

access the configuration files of the web server, but this is

not possible over the network. Such leaks in the environ-

ment therefore still pose a threat to the application. Here

the auditor is also introduced to the main functionality of

the program, just like when designing the application. In

our case, we have already found some security related

questions about the software, which could be checked

quite easily because the application is rather small. In

bigger applications it is probably better to leave out the

check and in the first step only focus on the collection of

ideas about possible security threats. In the next step, we

will then replace the black-box and start looking into the

application.

One thing that should not be forgotten when applying

this method is how much documentation of this applica-

tion is available. In this phase it is easy to enter “Code

review” as a possible check, but it might be, that the

source code is not available. Also it might happen, that

the source code is available, but cannot be tested for

whatever reason (platform problems, etc). It might even

happen, that only the design documentation is available

(i.e. when different components are developed simultane-

ously by different companies and no real code is present)

what makes it still harder to check for specific problems.

However, at least possible problems can be found and

mentioned in the report.

In case of “Code review” and “Security testing” we

should also try to define how this method should be ap-

plied as exactly as possible. We should define what

should be looked for in the review and how the test

should look like. Furthermore, it should be considered

that a code review in this phase might need long time,

because of the high level of abstraction; the occurring

problems may be big and complex and may span over

many lines of code, which would then have to be re-

viewed. Also testing for these problems can be exhaust-

ing. In these cases, it makes sense to mark these problems

to be checked by an Attack Tree, because they help

checking systematically for complex problems. Further

information on this can be found in the according chapter

(Attack Trees).

To sum up, we can state that this first method makes

sense to be spent time on, because we can already filter

some issues here, so that the Attack Tree will not grow

too big. This will save us time later on. The other, real

advantage is that this method forces the auditor to focus

on the environment. The drawback of this method is that

it is abstract and therefore application specific issues

cannot be found.

2.3. Design Analysis

2.3.1. The Theory Behind

In the next step, we move into the black-box and ana-

lyse the design of the target software. In this step, we rely

on a design diagram. This diagram should ideally be

available in the documentation. If they are not available,

but we can access the code, we can try to reverse engineer

such a diagram. This diagram may be a flow diagram, a

context diagram with its use cases or a domain model.

The domain model is for one reason not too good to have:

It is static; the domain model just explains the relation

between different classes. If there is another diagram

additionally to the domain model, like a collaboration

diagram or a sequence diagram, then the task of analys-

ing the design is easier. Depending on the type of the

diagram the threats are found at different positions. In a

flow diagram we find the threats at the blocks, whereas in

the in the context-diagram, the collaboration diagram and

the sequence diagram we find them in the actions. In the

domain model, these threats are also in the class intercon-

nections, hidden in terms of just visible through the class

interface. Therefore, we should have one additional dia-

gram of another type, if we are willing to use a domain

model.

In this diagram, we try to figure out where problems

might occur. If we have a diagram describing interactions

(flow chart, context diagram, sequence diagram, etc.), our

focus will be on these interactions when analysing,

whereas if we have a domain model, we will focus on the

relations of these classes. In the next step, we then can

take the problems we found in the diagram and make a

table with the threat name, its description the

planned/possible behaviour and the possible check for

that. The name should be descriptive so that we can dis-

tinguish the threats by their names. The description

should explain the threat in more detail, so that everybody

reading the analysis can understand what we talk about.

For the planned/possible behaviour, we have to look at

the diagram again and think of how the modelled piece of

code should behave and how it could behave according to

the diagram. This contains an estimation of the behaviour

in the best and in the worst case. Finally, we also should

think of a way to check how the program reacts in reality.

This is again one of the three remarks: “Code review”,

“Security testing” or “Attack tree”. As before, the Attack

Tree should be used if the problem might be too complex

to analyze here and as before, a description for the check

is helping later on. We still have to keep in mind that this

does not guarantee that all issues are covered, so for ex-

ample race conditions or combinations of different prob-

lems can still produce unpredictable behaviour in more

complex programs.

2.3.2. Applying the Method

In our example, we do not have any developer docu-

mentation; we will instead perform some analysis of the

code to reverse-engineer a meaningful diagram. Since

there are only a few classes in this application, we decide

to make a flow diagram of the program. This diagram will

not be too specific; we do not need to model each func-

tion call for this analysis. Instead, we just take blocks of

code and describe them. This impreciseness in this phase

is no problem, because we still just work on models. If we

would model each function call, we could directly forgo

this modelling and do a code review instead. Anyways, if

we get a diagram from the documentation, this will also

include some level of simplification and will not list all

function calls. We also leave out error handling, because

this will be covered later in the Flow Control Check; also

because in a good design error handling should not in-

clude any program logics. The result of this analysis is the

following diagram (Figure 3).

.

Figure 3. Design Diagram flowchart

In the diagram, we already integrated the next step. In

that step we do the same as in the Threat Scheme; we

search for possible threats to each block. For example, we

have the threats that the wrong configuration file is read

or that it contains the wrong values, as well as the search-

ing for a file poses the threat that the searched file cannot

be found. At the end of this step, we end up with a list of

threats, of which we have to check each, whether it is

real. Again, we make a table with the threats, their de-

scription, the planned or possible behaviour of the pro-

gram and a possible check. These columns have exactly

the same meanings as they had in the Threat Scheme. The

name is for distinguishing the threats easily; the descrip-

tion helps to give the reader (and also the writer) a more

specific idea about the threat. The planned/possible be-

haviour is meant to describe the best case and the worst

case according to the diagram, if this threat occurs and the

possible check is a first idea about how to check if this

threat is real. One thing about the worst case: This is

estimation is subjective. Depending if a shutdown of the

server is seen worse than execution of arbitrary code, the

entry in this column will be different. Actually, this is not

the worst thing to happen, because the intention of this

column is mainly to give an idea about how big the threat

is, for a possible priority ranking and for the final report.

In Table 1 (found in the appendix) we now try to make

this estimation.

Again, this table gives us some more specific informa-

tion about possible vulnerabilities of the tested piece of

software. As the last step of this method, we now have to

check all the possible vulnerabilities found by this method

to see if they are real threats. Because we left out this

check in the method before, we also have to check the

threats found there.

When we start to look at the code we can make the fol-

lowing conclusions (related issues from method one and

two are now taken together):

Malformed request: Code just accepts GET method.

Any relative address in the document request is tried to be

accessed, character encoding is the issue of Java and the

OS. Furthermore, basic requests just containing “GET

/some/location” are executed even if not standard compli-

ant.

Big requests: Everything is read but just the first line

is parsed. Unless there is some limit on the length of lines

read, very long lines could cause big memory allocations.

Request answered by the wrong process: No for-

warding in the application, just the port assignment by the

OS during startup. This means that the only forwarding is

done by the OS and out of scope.

Responding to the wrong address: Tampering im-

possible, because the answer is automatically sent to the

requesting address.

Too big response: Every file that is requested will be

delivered, so the only place to limit the size of the an-

swers is to keep the files shared small.

Response contains the wrong data: The response just

contains standard HTTP signatures, MIME types and the

contents of the requested files.

Changing system configurations/limitations: The

code does not set any configurations, nor any Sandbox or

OS setting. Furthermore, files are only read, but not writ-

ten.

Overloading resources: There is an unlimited amount

of threads answering the requests. If the response takes

long time, several threads can be running at a time. Other

requests are served. Ten threads usually should be on

stand-by.

Wrong configuration values: Ability to change lis-

tening port, index and MIME files and document root.

Influences confidentiality and availability. File access

needed for exploit.

Wrong MIME file or wrong MIME values: Void

MIME-type in HTTP response, which is an integrity

issue. File access needed for exploit.

Starting fails: Server is not running.

Connection dies: Connection communication fails

safely, the request is not proceeded.

Multiple connections in short time: Requests are

served after each other, the server slows down.

Starting the handler fails: Request is not served.

Wrong handler started: Random code can be exe-

cuted, threatening confidentiality, integrity and availabil-

ity. Local file system access is needed for this because

source code or files have to be changed

Output-stream is not ready: Connection fails safely,

request is not served.

Invalid request: The request is parsed minimally, so

errors in the request target are handed over to the opera-

tion system, the rest is neglected. No problem in the pro-

gram functionality.

Parsing has wrong result: The parsing works prop-

erly for all needed cases.

File not available: 404 Error is returned - fails safely.

Illegal file requested: This is possible with directory

traversal.

Index not available: Directory listing is returned - no

problem here.

Requested file is not ready: Program waits until the

file is readable. Response may be delayed

Requested file is illegal file: Fails safely - request not

served.

Requested file not readable: Cannot occur. In the

worst case the encrypted/raw text is sent back.

2.3.3. Evaluation of the Method

Depending on the size of the evaluated software, the

size of this method may grow. Still, due to the abstraction

of a diagram, we do not have to look at all lines of code,

but on the other hand the amount of possible problems is

bigger than in a code review. Because we do not focus on

a specific implementation, we instead have to think about

all the problems that could occur in an implementation.

Another problem is that the modelling might take a

while if the software is big, because all code has to be

gone through. In that case, it seems to be wiser just to

review the code, instead of taking this step. The reason is

that even though the looking at the code to generate a

diagram may be faster than reviewing the code, creating a

model may take more time, especially when more models

have to be made. In this case it is in our opinion too much

effort compared to directly reviewing the code.

If documentation and models of the software are avail-

able, we think that it surely makes sense to use this

method. One main reason is that this also gives the re-

viewer more insights on the design and its tidiness. An-

other advantage is that this method filters out most of the

basic problems that can be found in program behaviour.

For example, simple problems like “Connection dies” or

“Invalid request” can be handled already here.

Consequently, we do not have to check these possibilities

in the Attack Tree later, which saves us time there. The

danger in this method is that side effects and problems

that are more complex cannot be found. In addition, it

happens quite easily that a problem is estimated simpler

than it is and is checked in this step, instead of construct-

ing a more sophisticated Attack Tree. When we take for

example the possible threat of “Wrong configuration

values”, on the first sight it seems that there cannot hap-

pen too much. It might be, like in this example, that the

server listens on the wrong port or that the document root

is at the wrong place, but if the configuration file has

more power and decides which classes are loaded and

where they can be found, then a possible change of the

configuration may pose a big risk. Consequently, we have

to be really careful in this method to not take the too

simplistic solution on the question, if something is a

threat. Instead, we have to keep in mind that things could

be more complex as they look on the diagram we are

working on.

As said before, it also depends on the diagram that can

be used. In a domain model it is rather hard to find any

possible threats, because just the interfaces of all domain

objects are visible, but not their interaction. Thus, from

such a diagram it is possible to find problems like

“ClassA not loaded in time” or “Network not available”

but time and sequence related issues are hard to find be-

cause the diagram does not contain any time information.

In addition, more basic problems, such as “illegal file

requested”, are rather hard to find because the action of a

file being requested is hidden behind a method declara-

tion that might look in UML like
+ read_file(String filename): String

which stands for a function called read_file that takes

a filename and returns a string and is publicly visible.

Such an interface does not provide too much information

what happens behind the facade (in the basic intention of

modelling it also should not do that).

2.4. Attack Tree Analysis

2.4.1. The Theory Behind

Another way to check if a piece of software is secure is

the use of checklists. As there usually are some known

issues for each type of application (i.e. directory traversal,

cross-site scripting or SQL-injection for web servers), it

also makes sense to create a checklist of these issues and

check whether the software is vulnerable to those.

An Attack Tree - described in the book of Viega [1] -

is a way to structure and get an overview over the attacks

that are or might be possible against a system or a piece

of software. At the top level are the goals an attacker

might have when attacking. On the next level are the

possible attacks to achieve the goal and further down the

attacks are decomposed into possible and/or necessary

steps to carry out the attack. This top-down approach can

help to analyze which attacks can be done on a specific

piece of software. In the end we have a list of problems

that can occur and all their possible extensions. Further-

more, the Attack Tree includes possible requirements for

such an attack to be successful.

2.4.2. Applying the Method

In this example of such an Attack Tree, we start with

such a list of known issues. Then we go further and start

breaking down the problem into smaller sub problems and

combination of problems. Describe the problem roughly

(e.g. “Illegal File Access”) and then break it down into

smaller problems by splitting them. This splitting can be

made either by distinguishing between different types

(e.g. “Write access” vs. “Read Access”) or between dif-

ferent ways to attack (e.g. “Accessing via the program

itself” vs. “Accessing via random executed code”). The

whole and more general Attack Tree can be found in the

appendix, whereas we here just focus on the issues found

in the Dahlberg web server. This listing does not deal

with script engines, database managers and other compo-

nents that the web server might incorporate or use. This is

mainly because they are not used in the web server yet,

but also because that would be out of scope of this analy-

sis. Those should still be analyzed when they are incorpo-

rated into the web server.

Issues we found through the Attack Tree:

Unauthorized access to information: Simply request

any desired file by directory traversal with and even

without special characters. This is also possible by creat-

ing symbolic links on the local (server) file system. With

local access, it is also possible to tamper with the configu-

ration file and its values.

Execute code as the web server account: Tampering

with the configuration makes this possible as already

described before

Access and/or modify other users’ information

handled by the server: This can be done by the directory

traversal, because the server is running as root, so every-

thing is readable.

Intercept other users’ communication with the

server: Intercept unencrypted traffic, which is possible,

since the web server only supports HTTP, which is an

insecure protocol.

Denial-of-service attack: This can be done either by

flooding the server with requests or by requesting too big

files. Naturally, it is also possible to bring the server

down with local file access on the server in the program

directory. Additionally, both Caudium and Dahlberg have

a problem with memory consumption that could allow a

DoS attack: They accept infinitely long request strings

and infinitely many header lines, even malformed ones.

With the following command, Caudium will quickly

begin allocating all available memory:

 (echo GET / HTTP/1.0; yes) | nc hostname port

(nc is netcat, the TCP/IP Swiss army knife.)

Dahlberg is not vulnerable to exactly the attack men-

tioned above, as it throws away all headers (it does not

use them), but it may run into trouble with extremely long

lines. It depends on how the readLine() method of the

BufferedReader class works.

Some comments on a number of attacks/vulner-

abilities: A directory traversal attack can be possible

when the check for a requested file interprets the request

differently than the code that really fetches it. As an ex-

ample we could have a validation function disallowing

double dot (“..”, meaning “parent directory”) in the file

name, so that the requested file lies within the boundaries

of the server root (the directory on the local system that

corresponds to http://server.name/). If this function is

used before the URL is decrypted. It is possible to change

to parent directories with encrypting the dot with “%2E”

which is translated during the decryption into just this

dot. The Dahlberg web server does not check at all what

file is requested. Thus, this attack is possible here.

Caudium, on the other hand, relies on a built-in function

in Pike that translates a directory specification containing

“.” and/or “..” components to an equivalent one without

such components. If, in the process, a “..” would lead

above the root directory, it is simply ignored.

Privilege escalation happens when a legitimate local

or a user is able to gain the privileges of a more privileged

user. If the server will be serving files owned by an un-

trusted user, much care has to be taken to protect the

system from malicious code that could be executed by the

server. Therefore, the server should, if it itself runs under

a privileged account, be able to handle certain or all re-

quests under an unprivileged account. The reason for this

is that if scripts are run by the server as root, a malicious

user could just run own malicious code as root, when it is

requested. With this code, it is then possible to access any

other file. With symbolic links, the range of files that the

web server is allowed to access may be enlarged. Another

way of abusing a program to run with higher privileges is

to mess with the configuration. The program should

therefore make sure that the configuration file(s) it reads

is properly protected, and otherwise refuse to start, or at

least warn the administrator. Caudium lets ordinary users

write scripts that the server will execute. Therefore, It is

important that these scripts cannot access files that the

owner of the files cannot access. Dahlberg never runs any

external code, so this case does not apply. Still, it might

be possible to mess with the configuration.

Denial-of-service attacks for web servers can have

various forms. We will not explain all of them, but shortly

show some variations. Firstly, if the server can handle

only a limited number of parallel requests (either due to

system resources or configured limits), then each request

should not be allowed to take more than a limited amount

of time to fulfil. Otherwise, requests can be blocked later.

Secondly, all kinds of bugs, like unhandled division-by-

zero exceptions or memory leaks, could crash the server.

Therefore, proper error handling is vital for the server.

Even if an error cannot be handled gracefully, it should

not make the whole server crash.

Even if it is the system administrator’s responsibility

of to make sure that files can only be accessed by the

right persons, it is easy to oversee something and thereby

accidentally create a loophole that could compromise the

whole system. Therefore, default settings and file permis-

sions should always rather too restrictive than too loose.

Even if this limits the availability of a system, it still

ensures that an attacker cannot easily read files that

should not be readable or use a default password to access

a system.

2.4.3. Evaluation of the Method

An Attack Tree is a good way of organizing and struc-

turing information about a subject of security analysis.

Due to its tree shape, it is helping to focus first on the

abstract level and then go into detail. The structure of the

tree also helps to find new branches by looking at analo-

gies and the basic version of taxonomy helps as well. This

means that if we have a branch for “denial-of-service

attack” as a child of the “crash the server branch” it

seemed for us to be easy to think then about how to crash

the server without using a DoS. Still, there is some crea-

tivity needed to find security flaws, especially when it is

about finding new flaws and not starting from the list of

known issues. This also shows that there is no standard

algorithm or any scientific method that says how to build

an Attack Tree.

After completing the tree, it seems to make sense to

rate the problems by severity and ease of taking advan-

tage over these. In our example, we started but then de-

cided to skip this part because all severe issues found

were already found earlier in the process, so we did not

need to do any deeper analysis on the problems. In gen-

eral, however, we planned to rate these threats by giving

the severity as well as the ease of taking advantage a

rating from one to five. For the ease of taking advantage,

we also used the value zero, which stands for “not appli-

cable on this application”. Multiplying these two numbers

then tells us how big the threat is. In other words: An easy

to exploit leak that can be seriously harmful is a big prob-

lem.

One thing that we experienced when using this Attack

Tree was that it really helps to make complex problems

easier, since it helps breaking down big problems in

smaller parts. On the other hand, we can also see that

except the “interception of user data” we already found

all issues in the methods before. Still, we found more

details and more different possibilities of exploiting the

problems using the Attack Tree. In the case of “unauthor-

ized access to information”, for example, we found direc-

tory traversal vulnerabilities. However, we just thought of

the traversal with the double dots to roam in the file sys-

tem, and we did not consider any other way to code the

path until we had the branch in the tree. The reason is

simple: Since we first considered what threats there are,

we were satisfied with finding threats for example like

“Illegal file requested”. In that method we did not think of

how that threat can happen. However, in the Attack Tree

we do, because we were thinking if there is any other way

to access the files somewhere else, without using the

double dots. This is in our opinion the main advantage of

the Attack Tree. It makes the reviewer think of the prob-

lem in another way.

2.5. Environment Interaction Check

2.5.1. The Theory Behind

As a piece of software interacts with its environment

(user, sensors or other software), there is always the pos-

sibility that the communication contains void data or

information. Therefore, it is extremely important to check

how the software handles received data. There are well-

known examples of input validation problems in combi-

nation with buffer overflow, for example in O’Reilly’s

“Input Validation in C and C++” [3].

This check is the first code review; therefore, we go

through the code to check how the received input is han-

dled. This is the first of the review methods and we de-

cided that the most important criteria for reviewing the

security of program code are its validation of input and its

standards compliancy of output. By input and output we

refer to the interaction with the environment, not the in-

and output in means of reading from and writing to the

memory. Here, all input has to be checked; the user input

via direct interaction (GUI or system.in) and the input via

communication with other software (network communi-

cation, configuration files). It is important to check how

and if the input is validated. For this task, we look at the

validation methods and check if they really just validate

good input – if the good input is modelled for the valida-

tion. There are two main reasons for just modelling good

input, of which the first one is “the less features, the more

secure”. This means that there are fewer possibilities to

have problems with the validation. The second reason is

that it is not always possible to model all bad input, be-

cause there might be infinite variations of bad input and

some could easily be overlooked. If there are cases where

we are not totally sure about the behaviour, we have to

test with pitfalls. The problem with testing is that we

cannot test everything; we can just test a finite number of

cases. Therefore, it is ideal if we can formally prove the

input check valid.

The method we use here is to go through the code and

look for environment interaction (input and output). We

make a table with all interactions and write down the file

name, the line numbers, the type of action, the check

result and the severity. The file name and the line num-

bers are to find it again and for the reader’s orientation.

The type of interaction should help to give an idea about

what the code does, without looking at the code. The

check result is a brief summary about what the code vali-

dates and what is right or wrong about the way the code

validates. The severity rating helps then, at the end of the

method, to give a ranking of how severe a threat is. This

ranking is made subjectively and is of no major impor-

tance but it should help to get the right order into the

found issues when the report has to be written. We sug-

gest a scale with 5+1 values, meaning a scale with the

values “very low”, “low”, “medium”, “high”, “very

high”, and finally the value "none", if there is no risk for

problems at all.

If the result of the check is not totally clear it might

help to write a test for the specific code and check it.

2.5.2. Applying the Method

In our example, we have source code in four files,

three of which do input and output. Two of those are

reading configuration files and HandleRequest.java is

doing the main user communication, handling and an-

swering requests. The two other files have some problems

validating the input well, because they handle configura-

tion files. The problem with configurations is that they do

not necessarily have specific values, but sometimes it is

possible to check for syntactical correctness. This was not

done in the configuration loading classes, probably be-

cause it is too much effort. By having a configuration file

written XML or as a Java .configuration file, the intention

is to have a simple file type where all values can easily be

read into a data structure (hash map or similar) and then

easily be accessed in the program. If there is a plausibility

check added into the reading, then this simplicity is lost.

Here is the summary of the issues we have found (the

main table is table 3 in the appendix):

� MIMETypes.java: Read configuration: The input

cannot be validated because almost anything can be

valid input. Void input does not harm the application

but sets some wrong parameters in the response. Prop-

erties without values are possible. These problems are

rated "very low".

� ConfFile.java: Read configuration: The input can not

be validated because almost anything can be valid in-

put. Void input can harm the application in making it

crash or not find the needed data. Properties without

value are not possible. No check for a valid configura-

tion. These problems are considered as "low".

� HandleRequest.java: Parse request: Basic parsing,

not all of the request is parsed or validated. The URI is

not validated. We consider this issue as "medium".

� HandleRequest.java: Return response: The response

is standard-compliant but relying on the values of the

MIMEConfig and the requested file. Therefore the se-

curity threat is considered "very low"

� HandleRequest.java: Read requested file: Data is just

read and sent to the output but not used any further.

This is no direct security threat to the application.

While it might be one for the client, that is out of

scope.

� HandleRequest.java, other files: Error output: This is

in the user case valid a HTML error response and oth-

erwise a simple System.out statement. This is no

security threat.

When we look at this list, we can see all the significant

in- and output of the software that interact with the envi-

ronment. Due to the rather small size of this piece of

software, there is not too much I/O; still we could find

some problems that might occur. The URI is not validated

at all; this could actually be any string without an empty

line in it. Thus, this string can contain any coded data and

has no length limitation. Since the URI-based file access

is done by the operating system, the file access of java

will complain in all cases when a file cannot be accessed.

Furthermore, due to the use of Unicode, special characters

such as quotes etc. should not be a trouble.

Another problem is that the input from the configura-

tion file is not checked. Instead, the code relies on all

values being entered into the configuration file. This

means that it is possible that attributes are requested

though not present. It would be much better if, after the

initialization, a check were made that all the required

values are initialized. Their validity may be hard to prove,

as mentioned earlier. The same problem applies on the

MIME types, even though the program here still runs

stable, but produces void results if the configuration is

void. Since write access to the configuration files gives

full control over the server anyway, this access should be

reserved for the administrator. The input read from the

configuration file could then be regarded as trusted. If,

under that circumstance, the server crashes due to bad

configuration, it is merely a bug, not a security bug.

However, if mistakes in the configuration cause unex-

pected and unnoticed behaviour, it could be regarded as a

security issue (many security breaches are unintentional,

and software should be helpful to prevent mistakes). See

also the comment on privilege escalation in section 2.4.2.

2.5.3. Evaluation of the Method

This method seems to be good for giving hints for

searching for input validation and the associated prob-

lems, because it gives specific starting points. This

method can also be seen as an add-on to the Threat

Scheme, because here, the interaction with the environ-

ment is also checked. With the Threat Scheme we focused

more on the syntactic validity of the interaction – we

cared about what file we could read and if the connection

is still alive – now we focus on the semantics and see if

the communication follows the standards. So now, we

check whether the data in the file is read and interpreted

correctly.

As we can see, issues became visible that were still

rather hidden in the environment check, for example the

fact that in the configuration files properties without val-

ues are possible. The drawback of this method is that it

also might get rather time intensive if the code has much

input-/output-interaction. This is also the reason why it

makes sense to put all the input validation in one file/class

when developing – the code does not have to be changed

in too many places but is instead in one place in the appli-

cation. The fact that it is a code review should let this part

be done quite easily and quickly. This means that less

experience is demanded, since the reviewer has to under-

stand what the program does but does not need to know

about security issues of specific functions.

2.6. Control Flow Check

2.6.1. The Theory Behind

One issue that is hard to check by any model, checklist

or other means is the control flow of code. Therefore, we

thought it makes sense to make a code review focusing on

the control flow. Even if the pure control flow of a piece

of code can be modelled nicely with a flow chart, the

processing control is harder to model. With processing

control, we refer to the overall way of how the code is

processed. To make this difference more clear we can

look at an example in pseuodocode:

if file X exists

 then delete file X

create file X

With the control flow, we mean the if-then combi-

nation, whereas with processing control we refer to the

fact that, in any case, a new file is created and, before

that, the old one deleted if it exists. This processing con-

trol becomes more important when the application is

multithreaded and accesses common sources. Then it may

happen that race conditions occur. This means that there

is a race between two or more different threads, all trying

read and write to the same resource, naïvely assuming

that the state of the resource is unchanged meanwhile. In

reality, unless precautions are taken, there is a small but

non-zero chance that the assumption is false. In multi-

threaded environments, this can occur because threads

may be suspended and put to sleep. In our example, these

two threads could be the thread running the program and

another thread writing to a file, maybe run by the user.

The third part of this check is the error handling and

logging. Here it is important that all possible errors are

handled and logged, and the program goes back to a sta-

ble mode, i.e. it "fails safely".

In this check, we will start out by focusing on race

conditions, flow control and other possible timing prob-

lems. This should usually be possible to do directly on the

code. This means another code review, where this time

the main focus is on the question: “Could something bad

happen in the time from when I assured myself that it is

ok till now?” With some reasoning, we can do this purely

on the code; if things get more complicated, we can also

use a flow diagram or a sequence diagram. Thereafter we

will also have a look at the error handling including the

logging of unexpected problems.

2.6.2. Applying the Method

The flow control regarding race conditions is done

rather quickly because the biggest part of the program is

sequential. There is the point where the threads are

forked, but this forking is performed consecutively, so no

problems occur there. Moreover, the failure of any action

is covered by the code and the system usually fails into a

safe mode – even if a certain request then is not processed

the server remains online.

One thing that can occur is that the files could be ac-

cessed (moved, deleted, etc) between the time they are

checked to be directories or to be existent, and the time

they are read. In these cases, the reading will then fail and

the request will either be answered by an error code or it

will just be neglected and some error message be written

to System.out. This kind of race conditions will al-

ways happen, because we always have some time be-

tween the check if a file is present and the access on it.

Nevertheless, the error handling could have been solved

more nicely by a separate ErrorReportingClass that does

all the logging and reporting of errors. This has some

advantages: All error-messages have the same format and

are near to each other and thus easy to find. The second

point is that if this part has to be changed, then it is really

an advantage to have all the output in one place so that

everything does not have to be changed.

We also applied the method on the Caudium web

server and found problems there. In the standard file

system module, filesystem.pike, we found some suspi-

cious lines of code. This code is handling HTTP PUT

requests. The following code will remove any existing

file with the same name, create a directory if necessary

and finally open the file for writing.

 if(QUERY(keep_old_perms))
 st = file_stat(f);
 rm(f);
 mkdirhier(dirname(f));
 object to = open(f, "wct");

To exploit the race condition, the following must be

true: Several users have write access to the same direc-

tory; one user tries to upload a file; and another, mali-

cious user creates a file with the same name after rm() is

called but before the file is opened. The other, malicious

user will then gain (or rather, retain) ownership of the file.

2.6.3. Evaluation of the Method

This method has the advantage that it shows the whole

construction from another side that was not covered be-

fore. Until this method, time was no factor. In fact, some

problems only occur in certain situations and constella-

tions. These things have not been regarded before. The

problem with these problems is that quite a lot of those

just will occur, whether we want it or not. Still, it does not

harm to have a look from the more time-dependent point

of view.

2.7. Security Principle Checklists

2.7.1. The Theory Behind

According to Viega [3], there are 10 basic guidelines

for developing secure software. If these are guidelines for

creating secure software and we are searching for criteria

to find weaknesses in software, then we think that these

rules should also be applicable on security analysing

software. These rules are (from Viega [3]):

� Secure the weakest link

� Practice security in depth

� Fail securely

� Follow the principle of the last privilege

� Compartmentalize

� Keep it simple

� Promote privacy

� Remember that hiding secrets is hard

� Be reluctant to trust

� Use your community resources

As each rule is a basic rule for development, these

should be regarded in all phases of the development. If

this is the case, then the developer probably had security

in mind when developing. Moreover, if the developer did

so, we should be able to see some of the effort in the

work. We try to apply all these rules on our example web

servers so that we estimate the overall security.

2.7.2. Applying the Method

When we look at the application we see that it is so

small that not all principles may be applied, so we just

regard those that can be applied on the software and com-

pare these with the Caudium web server.

Fail securely. This point is quite convenient in Java,

because Java forces the programmer to catch exceptions

and to fail safely. This is done by resolving the error

handling from the program flow, unlike in C/C++ where

the errors are indicated with return values. Because of the

separation of error handling from regular code, the error

handling must not contain program logics, but only clean-

ing tasks (closing connections, files, etc.). This is done

cleanly in the Dahlberg web server. Caudium also fails

securely. Scripting errors can for example be printed out,

but this traceback is switched off by default for security

reasons.

Run with Least Privilege. Because this server should

be running on port 80 (according to the configuration), it

is difficult to run it without root permissions. The Dahl-

berg web server stays in the root privilege, whereas

Caudium just uses the root privilege to open the listening

port, but then runs the scripts and accesses the files as a

user with fewer privileges.

Compartmentalize. This was applied in the widest

sense because the application was modularized and not

written in one big class. Usually this means that the in-

volved systems should be separated from each other and

that there should be different levels of authorisation. For

this application, it is a generous interpretation of this

principle. In comparison, Caudium parses the request in

one file, but does all the rest in separate modules which

can be loaded and unloaded dynamically (security mod-

ules, PHP, user file system, etc.)

Keep it simple. As the Dahlberg web server is a small

web server with just few classes and little functionality, it

is hard to not keep it simple. The server is implemented

like a standard server and the code is easy to read and

understand. Caudium is also easy to read from the point

of the code, as Pike is really C-like, but to navigate along

the method calls and the control structures was harder.

This is probably also because of our little experience in

programming Pike.

Be reluctant to trust. This guideline was neglected in

the request parsing as well as in the configuration part of

the Dahlberg web server. It trusts the configuration file as

well as the incoming request, which is much worse.

Caudium however seemed to be suspicious about the

information it got from external entities.

2.7.3. Evaluation of the Method

After checking the code by these more theoretical

guidelines, we get a good picture about how much secu-

rity was on the mind of the people developing. Surely,

this is no sure proof that the code they wrote is totally

secure, but still it gives us some idea about the level of

security. It shows quite easily if these basic principles

were applied or not. As this check controls mainly con-

ceptual decisions, it also shows how accurate the review

until now was made, in case that new security issues still

can be found.

As an easy and quite quick method, this seems to be a

good way to give the whole review a final round-up and

to provide a good overall picture of the security of the

application. As this method is short, if the reviewers are

familiar with the reviewed application, we think that this

method is still worth the time. However, we also think

that the amount of new issues found with this method is

rather small.

3. Security Report

3.1. Intention and Structure

At the end of a security review, there should always be

a report summing up the result of the review. This report

should give the reader specific and descriptive informa-

tion about problems in the software. This is very impor-

tant if another application will be based on the evaluated

application, because then these security problems have to

be kept in mind when using this evaluated part. If this

code will be a part of another application, then already in

the design of the whole application these overall issues

have to be taken into account. By reading the report, it

should be possible to get a picture about the software,

where its weaknesses could be and where its strengths

could be. Still, we can never be totally sure about the

security of the tested code.

The structure of the report is a standard report struc-

ture with following main points:

1. Title

2. Abstract

3. Introduction

4. Methodology

5. Results

6. Discussion

7. Recommendations

8. Appendices

9. Bibliography

3.2. Example Report

As we are providing the whole example review of a

web server written in Java, we also produce the sample

report of such an analysis. This will be a sample report for

the Dahlberg web server. The layout of this report may

differ from any other possible reports, but the result is the

real result we got for this web server. As this result should

be reproducible, it should ideally also be the same as all

other possible evaluation results.

The report can be found in the appendix. (7.3)

4. Summary

As we started to develop this method, we had quite a

different view of how these parts have to be linked to-

gether and what method should follow which. After a

while, we realized the different advantages and disadvan-

tages of each method. One thing that limited our testing

experience was the size of our testing target. The Dahl-

berg web server is rather small and therefore we think that

the methods were overkill. On a bigger system, these

methods all seem to make more or less sense, because

each method shows another point of view for the goal.

However, on this small system, they always found the

same security issues.

One thing to consider is which methods to use, if there

is not so much time for a complete review. If we have to

choose which methods we would leave out in a quicker

but still thorough review, then we would probably choose

a combination of the Design Analysis Check, Attack Tree

and the Environment Interaction Check. The reason for

this choice is that the Design Analysis really helps to

understand the structure of the whole application. There-

fore, it does not just only help finding security problems,

but this step is also important for preparing for the Attack

Tree. Firstly, it generates some useful points to start with;

secondly, it is hard to make an Attack Tree for a piece of

software, if the software is not known. The Attack Tree is

our choice for finding complex security issues – issues,

where multiple factors have to play together in the right

way for a security hole to open. These leaks are much

easier to find through the systematic approach of the

Attack Tree much easier to find than by considering what

errors could occur at some specific point. The third

method of choice was the Environment Interaction Check.

The reason for choosing this one is that the care that de-

velopers showed in validating input is probably the same

care they used for developing the whole package. So if

the valid input was not modelled properly, chances are

big that errors occur somewhere else as well. The second

argument for the input validation is that threats to a piece

of software usually come from the outside. Surely, soft-

ware has bugs, when it is written and error free program-

ming is a main goal, but if a system is attacked, the attack

is usually initiated from outside. If this is not the case, the

software was not tested sufficiently and probably failed

because of errors in the code.

However, we believe that we often do not have a

choice when it comes to selecting a method, since it is

rather rare that we have everything from documentation

to the source code for an application. When we have the

code we surely can reverse engineer some models but this

also takes quite a long time, and compared to the results

from these methods, the effort is probably too big for a

code review.

Nevertheless, we think that these methods are helpful,

especially to less experienced reviewers, to find criteria

for evaluation faster. If a reviewer is experienced, usually

she already knows what to search for, but when the re-

viewer lacks experience, such a review will seem to be a

big task, where it is unclear where one should start.

5. Glossary

Analysis tools: A program that goes through the code

and tries to find security leaks (unsafe function calls,

security estimations for code, etc.).

API: Application Programming Interface; A set of

definitions of the ways in which one piece of computer

software communicates with another. It is a method of

achieving abstraction.

Availability: The property that a service can always

be accessed by all authorized users and that it cannot be

limited or shutdown by any other instance.

Class loader: An object that is responsible for loading

classes. Given the name of a class, it should attempt to

locate or generate data that constitutes a definition for the

class. A typical strategy is to transform the name into a

file name and then read a “class file” of that name from a

file system.

Collaboration diagram: A diagram showing the col-

laboration of multiple entities through their sequential

method calls.

Confidentiality: The property that information can

only be accessed by authorized users.

Context diagram: A diagram describing the interac-

tion between the environment (stakeholders of a system)

and the application.

Control flow: The order how code statements should

be executed with given input values, according to the

programs algorithm.

Denial-of-service: DoS, an attack on a system forcing

it to shut down, to “deny service”.

Directory traversal: Getting access on directories that

should not be accessible, by tricks with the path, like

including double dots (“..”) in the path to access higher

directories.

Domain model: A diagram describing the domain ob-

jects (an entity in a modelled system) that describe busi-

ness logic and entity relations.

Flow diagram: A diagram describing the control flow

of an algorithm.

Integrity: The property that valid information cannot

be changed (by accident or maliciously) and also that the

origin of the data is the expected one.

Privilege escalation: That a local user or a program is

able to gain the privileges of a more privileged user.

Race condition: A race between two different threads.

A race condition is present when a value is incorrectly

assumed to be constant between two points of execution,

when in fact another thread could change the value.

Runtime environment: A software platform (envi-

ronment) for code to be executed. Usually combined with

cross-platform functionality.

Security: Being free of danger that the confidentiality,

integrity or availability of a system is decreased.

Security auditing: The process of going through code

with an auditing team, trying to find threats and figuring

out how secure a piece of code is.

Security testing: Testing code with malicious input to

figure out if there are possible security leaks.

Sequence diagram: A diagram showing the method

invocations between multiple classes along the time axis.

SQL-Injection: An attack on databases where arbi-

trary SQL code is executed, that might have been entered

through a commonly accessible (web)interface.

UML: Unified Modelling Language, a commonly

used, non-proprietary modelling language for analysing

and designing software.

6. References

[1] Viega, John and McGraw, Gary. Building Secure

Software: How to Avoid Security Problems the Right

Way. Addison-Wesley Pub. 2001.

[2] Howard, Michael. Writing Secure Code, 2
nd
 ed. Mi-

crosoft Press 2002.

[3] Viega, John and Messier, Matt. Input Validation in C

and C++. O’Reilly 2003.

[4] Java security whitepaper,

http://java.sun.com/security/whitepaper.ps. Sun Micro-

systems Inc. 1996.

[5] SecurityFocus advisories,

http://www.securityfocus.com. 2004.

[6] Pike website, http://pike.ida.liu.se. 2004

7. Appendix

7.1. Attack Tree

1. Goal: Unauthorized access to information (as the account the server is running as)

1.1 Simply request any desired file

1.1.1. Directory traversal attack

1.1.1.1. Simple directory traversal (/../)

1.1.1.2. Directory traversal with encoded characters

1.1.1.2.1. URL encoding (%2E%2E)

1.1.1.2.2. UTF encodings

1.1.1.2.3. Other encodings

1.1.1.2.4. Combinations

1.1.2. Use a backdoor

1.1.2.1. – left by developers

1.1.2.2. – maliciously introduced in a binary distribution

1.2 Use symbolic links to access files outside the web server tree (local attack)

1.3 Tamper with the configuration (local attack)

1.3.1. Trick the server into loading the wrong configuration file

1.3.1.1. Trick the server into loading the wrong class file (java specific)

1.3.1.1.1. Exploit bad checking of environment variables

1.3.1.2. Do tricks with symlinks

1.3.1.3. Exploit weak file permissions

1.3.2. Overwrite the configuration file

1.3.2.1. Exploit weak file permissions

1.3.2.1.1. Use bad server privileges

1.3.2.1.2. Use leaks in the operating system

1.3.3. Change the configuration during runtime

1.4 Find a valid password

1.4.1. Guess a password

1.4.2. Intercept a password sent over the wire (see below)

1.4.3. Look for passwords in script code

1.4.3.1. – included in runtime error messages

1.4.3.2. – accidentally sent instead of executed

2. Goal: Execute code as the web server account

2.1 Find a buffer overflow

2.2 Request executable file directly

2.2.1. Use a backdoor

2.2.2. Exploit directory traversal to execute any file (see above)

2.2.3. Exploit bad configuration to execute untrusted code (local attack)

2.3 Tamper with the configuration (see above)

3. Goal: Access and/or modify other users’ information handled by the server

3.1 Obtain user passwords by intercepting traffic (see above)

3.2 Guess passwords

3.3 Tempfile attack (e.g. put symlink with predictable temporary file name in /tmp, pointing to file)

4. Goal: Intercept other users’ communication with the server

4.1 Intercept unencrypted traffic (Outside the scope of this analysis, since HTTP is by design an insecure protocol)

4.2 Intercept encrypted traffic (SSL/TLS)

4.2.1. Obtain or replace the server private key

4.2.1.1. Exploit weak file permissions

4.2.2. Break the encryption

5. Goal: Cause denial of service (attack on availability)

5.1 Flood the server with requests

5.2 Crash the server

5.2.1. Request big file

5.2.2. Send malformed request strings (exploit bad input validation)

5.2.2.1. Long request strings (buffer overflows)

5.2.2.2. Un-handled control characters

5.2.2.3. Zero-length requests

5.2.2.4. Other types of unchecked input

5.2.3. Delete executable files

5.2.3.1. Exploit weak file permissions

5.2.4. Find a memory leak

5.3 Hang the server

5.3.1. Request big file

5.3.2. Find a bug that causes an infinite loop

7.2. Tables

Table 1. Issues found through the Threat Scheme

Problem Description Possible Check

Request

Malformed request The request could contain invalid characters, random data,

it can be malicious or just be almost valid.

Code review (input handling)

Security testing (pitfalls, random data)

Big requests Incoming requests might be longer than standard requests.

This might block the application whilst parsing.

Code review (input handling)

Request answered by the

wrong process

If incoming requests are distributed either by the OS ac-

cording to the socket or by the program according to the

request string, a wrong decision can be taken.

Code review (input handling, control for-

warding)

Response

Responding to the wrong

address

The response is sent to another than the requesting address. Code review (tampering with answer address)

Too big response Resources can be blocked if too big resources are requested

(e.g. network throughput)

Code review (response length & handling)

Response contains wrong

data

The response contains non-requested information like

debug info, or other data.

Code review (response handling)

Resource Access

Changing system con-

figurations/limitations

Limitations by the JVM could be changed, also write ac-

cess on system files might happen.

Code review (request handling)

Attack Tree (access on system files)

Illegal access of re-

sources

Can resources like network, databases or printers accessed

or can the access to these be hijacked?

Attack Tree

Executing files Is it possible to execute files. Are these files in some spe-

cific folder that cannot be accessed otherwise. Can files be

executed, which should not be executable?

Attack Tree.

Overloading resources Is the access to resources (CPU, RAM,...) limited or unlim-

ited?

Code review (thread handling)

File system Access

Illegal file-access (sys-

tem or configuration

files)

Is it possible to access any other files, that are not in the

web-root?

Attack Tree.

Illegal file modification Is it possible to modify somehow files that should not be

modifiable?

Attack Tree.

Interference with files

and file system

Is it possible to interfere with the file system in terms of

deleting, moving, etc files?

Attack Tree.

Table 2. Design Analysis results

Threat Description Planned/possible behaviour Possible check

Wrong configuration The wrong file could be loaded or the Server is executed but behav- Attack Tree

Threat Description Planned/possible behaviour Possible check

file file is not found. iour is uncertain Review code

Wrong configuration

values

Values in the configuration file can be

wrong.

Server is executed but behav-

iour is uncertain.

Review code

Check the configura-

tion file documentation

Wrong MIME file The wrong file could be loaded or the

file is not found.

Server is executed but behav-

iour is uncertain, probably

void MIME-type in HTTP

response.

Review code

Check the MIME-file

documentation

Wrong MIME values Values in the configuration file can be

wrong.

Server is executed but behav-

iour is uncertain, probably

void MIME-type in HTTP

response.

Review code

Check the MIME-file

documentation

Starting fails The startup of the server fails or the

server-socket cannot be opened.

Sever is not running. Re-

sources might be blocked.

Review code (occupied

resources)

Connection dies The established connection suddenly

dies.

No response is sent Review code (error

handling)

Multiple connections

in short time

A big amount of connections are

opened at the same time, try to connect

at once.

Serves one after each other

and slows down.

Review code (thread

handling)

Security testing

Starting the handler

fails

The request handler cannot be started. Request is not served, server

runs on

Review code (error

handling)

Wrong handler

started

Another than the appropriate handler is

started.

Server behaviour is unpredict-

able

Attack Tree

Review code (flexible

class for name possible

in configuration)

Output-stream is not

ready

The connection is established, but noth-

ing can be written into the output-

stream.

Request not served Review code (stream

handling)

Invalid request The request is invalid (contains special

characters, malformed, etc).

Only valid requests are proc-

essed, in worst case all re-

quests are processed

Review code (request

parsing)

Parsing has wrong

result

The result of parsing the request is not

the result that should be created.

Wrong result is processed Review code (request

parsing)

Request too big The request-string is too long and

blocks the request-parser.

Request is tried to be handled,

in worst case the application

runs out of memory

Review code (request

limitations)

File not available The requested file is not available The request is not served Security testing (re-

quest non-available

file)

Threat Description Planned/possible behaviour Possible check

Illegal file requested A file is requested, that should not be

accessible.

File should be checked, re-

quest is served in worst case

Review code

Security testing (direc-

tory traversal)

Index not available For directories is no index files avail-

able,

Directory listing is generated Review code

Requested file is not

ready

The file that should be served is still

locked and not ready for being read.

Program waits until the file is

readable, response may be

delayed.

Review code

Security testing

Requested file is

illegal file

The file requested is not valid (contains

invalid characters or checksums, etc)

Request not served Review code

Security testing

Requested file not

readable

The requested file cannot be read be-

cause of encryption, encoding, etc.

In the worst case the en-

crypted text is sent back.

Security testing

Requested file too

big

The requested file is too big for sending

easily.

The server sends the file so

network resources may be

blocked, in worst case the

server runs out of memory.

Security testing

Table 3. Environment Interaction Check results

File Line(s) Action Check Severity

MIMETypes.java 27 - 51 Read configuration Input cannot be validated since almost any-

thing can be valid input. Void input does not

harm the application but sets some wrong

parameters in the response. Properties with-

out Value are possible.

Very Low

ConfFile.java 10 - 50 Read configuration Input cannot be validated because almost

anything can be valid input. Void input can

harm the application in making it crash or not

find the needed data. Properties without

Value are not possible. No check for a valid

configuration.

Low

HandleRequest.java 64 - 78 Parse request Basic parsing because just partly used. The

read URI is not validated.

Medium

HandleRequest.java 126 - 172 Return response The response is standard-compliant but rely-

ing on the values of the MIMEConfig and the

requested file.

Very Low

HandleRequest.java 144 - 149 Read requested file Data is just read and sent to the output but

not used further.

None

HandleRequest.java 183 - 194 Error response Returns standard compliant data. None

HandleRequest.java 198 - 213 Error response Returns standard compliant data. None

Various files N/A Error-output Simple System.out statements that do not

have to have any specific format.

None

7.3. Example Report

1. Title

Security Review of the Dahlberg Web server, version 2 - May 10, 2004

2. Abstract

This report gives a security overview about the Dahlberg web-server written in Java. It shortly describes the methods

that were used to find any security problems in the web server. It also describes the problems found and recommends

possible actions to solve these problems, if the web server is used in a bigger context. The major problems that were

found were directory traversal, local file access issues, input check validation problems and denial-of-service vulnerabili-

ties.

3. Introduction

The Dahlberg web-server from http://www.dahlberg.se/java/httpd/ is a basic, standard-compliant web-server com-

pletely written in Java. Even though its functionality is quite limited – it just serves the HTTP GET request – it is still a

possibility for a small and basic web-server running on the local host. It supports GET requests, directory listings, index

files and basic error responses. It is configurable and can be run by any user on a higher port-number (> 1024) or as root

on any possible port. The web server is written in four classes and uses two configuration files to keep some parameters

flexible. One of the configuration files is for the general server configuration; the other one is for configuring the MIME

type in the HTTP-responses.

4. Methodology

The applied methodology follows the scheme described in the review paper of Holmgren and Mähr [a]. This approach

is a top-down approach on existing software with a security review of the code without taking influence on it. We started

with a Threat Scheme on this application to model the software in its environment. Then we did a Design Analysis to

have a closer look on the design of the software and possible problems in there. Thereafter we made an Attack Tree analy-

sis on the web-server for finding more complex security issues. These checks were then followed by two code reviews

with focus on different aspects. At first we focused on the direct environment interaction, and after that we continued by

going through the program analysing the control flow and finally we made an overall estimation of the general impression

of the code security.

5. Results

When we were applying these methods, we found following security issues:

� Directory traversal is possible.

� With local file write access the server can be forced to execute random code or just crashed.

� Possibility to overload the server with requests.

� Files of any size are served.

� Request are also processed if the are malformed and not standard-compliant.

� Input validation of configuration files is sometimes weak.

6. Discussion

These points are all security problems we encountered in the web-server. From these, the biggest problem is posed by

the directory traversal because through this leak anybody can easily request any local file. As the Dahlberg web server is

run on port 80 by default, and root privileges are needed for opening this port and these privileges are never given back,

the software runs as root. This alone is bad, because in case of failure or in case of a successful attack on the server by a

malicious user, the user could use this as privilege escalation. In combination with the possibility of a directory traversal

(the document path including the two dots is gladly used), it is possible to read every file on the whole system. This in-

cludes all the root-only readable files that store passwords, but it also includes files from other users, which could contain

sensitive data. Through this leak, it should not be too hard to read user information like username and passwords (or their

hashes) for gaining shell access to the server. This is a real and big threat, opening a big security hole in any secure sys-

tem.

A much smaller problem is the local access. If someone manages to access the program files and manages to replace

the HandleRequest.java file with his own version, then this one also can execute arbitrary code with the same

rights as the rest of the application. Another possibility is to tamper with the configuration files, which then at least makes

the server unavailable or makes it generate useless output. Fortunately, the configuration files are not too powerful, they

do not define, which classes are called are loaded, or the paths to used classes, but they still define the document root. In

this case (through the problem of directory traversal - see above), this does not make too much difference anymore.

The fact that the server handles every request, independent on the size of the requested file, makes it vulnerable against

denial-of-service attacks. If the document root contains bigger files, then they are served. Furthermore, the server handles

each request. Although the length of the request string is not threatening to – too long requests do not block the server –

the server can be slowed down significantly if a big amount of requests is sent to it at the same time. Ten threads are by

default waiting for requests, but every request more than ten has to wait until a request handler has started up, which may

take some time.

The fact that the configuration is not validated while being loaded conceals some possible problems. If something goes

wrong while loading these values, the main program may not realize it and may run with just the half of the values set

properly, as it is also possible to just have parts in the configuration without any value, with just a key. At least the avail-

ability of all keys should be checked before they are used.

The processing of non standard-compliant requests is actually no real security threat, in this time it is even an advan-

tage because the server is not vulnerable for any attack witch long requests.

7. Recommendations

Considering the directory traversal problem we recommend strongly to change the code (as far as it is legally possible),

this check is just a minor change in the code and does not take too much time. Especially in combination with the root

rights, this leak is too big and too easy to use. The second thing that should be taken care of, when using the Dahlberg

web server, is to ensure that no non-privileged user has any access to the program files of the web server, not access to the

configuration files. To deal with the possible threat of a denial-of-service attack, it would help to at least limit the size of

outgoing files. This means that before serving the files, the server checks their size and just delivers them, if they are

small enough or if there is not too much other traffic. Against the fact that there could be a big amount of clients connec-

tion at the same time cannot be done too much, the ten request handlers that are waiting should be enough and for normal

use it does not make sense to have more of them waiting. For the issue with the configuration files we also propose to

change the code so far, that after reading the files, the program validates, if there are valid values in the configuration and

otherwise refuse to start. This requires some modelling of possible good configuration data. If these issues are covered,

the server can safely be used for small web serving. There still might be security issues hidden in the application, but

compared to the size of the application and the frequency of use of this web server it seems to us that the server has been

audited satisfyingly.

8. Appendices

None. Here would be the copies of the results of each method (i.e. table.1) but for size reasons we leave them out here

9. Bibliography

[a] Holmgren, Magnus and Mähr, Wolfgang. Applied Security Auditing. Linköping 2004.

