
TDDC03 Projects, Spring 2004

���������	
�����

Fredrik Linell

David Mellqvist

Supervisor: Emil Haraldsson

���������	
�����

Fredrik Linell
��������	
����������
�

David Mellqvist
�������	
����������
�

TDDC03 Information Security
Linköping Institute of Technology

May 10, 2004

��������

������
������������������
�������������������������
���
�
������
�
��������
������
 �����!�����������"
�� �
� ������ ���� �������� ���
�� !����
� ��� ���� ���

��������� #�� ����� �
 ����� ��������� ���� ����� �� ��"
��
�
��
���������
�
��������
������������������"
!������������� �������
��$��������� �� ���%��
� �������
����"����
����!���
��������� �������#������������
 �
��
�������������
����������������������� ���&���
����������
������
���������� �
�
��'�������������

���� �� ��
���
�������������� �
��
����
�����������
���� ����������
� ������ ���� ���� �����!������� ���� ����
��� �����!� ��� ���� ��� ������ ���� ����� ���������"

���
��!���
�����
�������
�

��� �	���
�����	

There are many reasons for having protection
against viruses and worms. Viruses and worms make
different kinds of damage to your computer. It may be
something simple, like showing a message on the
screen that the computer has been infected. Although it
may only feel irritating at first, the user can feel that
his privacy has been violated.

More dangerous viruses can destroy files and take
control of the computer. What all viruses and worms
have in common is that they use up resources, such as
processing power and memory.

For a private person viruses and worms may just be
annoying but corporations can lose money because of
viruses and worms.

For example, E-mail systems can clog up, as a re-
sult of e-mail worms users can not use the e-mail
service. Viruses and worms can also be used in Denial
of Service of Attacks against a corporation’s website,
which makes it almost impossible for customers to
access the website.

What motivates people to write viruses or worms?
The motives vary a lot from person to person but some
of them are [1]:
• They want financial gain by spamming/commercial

sabotage
• They want access to confidential information
• They want to impress their friends
• They have ideological motives
• They have political reasons
• They want to highlight different questions
• They want revenge
• They want to prove to themselves that they can

write viruses/worms
The reasons to why we want to protect ourselves

from viruses/worms are easy to understand. Let us now
look at which techniques virus/worm writers use and
what countermeasures we can use against them. But
first, let us define the terms: Malicious Program, Tro-
jan, Virus and Worm.

��� ����	����	�

There are a number of definitions of words fre-
quently used in this paper in this section.

����� �����������������

Malicious code/program/software refers to any type
of malicious, unexpected, unauthorized piece of com-
puter code. ()���*
�+���
�,��

��� defines malicious
code as “a piece of code designed to damage a system
or the data it contains, or to prevent the system from
being used in its normal manner.”

Malware is short for malicious software, there are
many similar definitions. McAfee defines it as “a ge-
neric term used to describe malicious software such as:
viruses, trojan horses, malicious active content, etc” [4]
Webopedia defines it as “software designed specifi-
cally to damage or disrupt a system” [30].

Why use the words malware or malicious
code/program/software, isn’t it enough to classify if the
code/program in question is a Trojan horse, virus,
worm, etc? One answer is given to this question in
Trend Micro’s Virus Primer: “Due to the many facets
of malicious code or a malicious program, referring to
it as malware helps to avoid confusion. For example, a
virus that also has Trojan-like capabilities can be called
malware” [3].

Let’s look at the definitions of Trojans, viruses and
worms to see what characterise these different types of
malware.

����� �����	�

The name Trojan horse comes from Greek mythol-
ogy. In the Iliad, by Homer, the legend speaks of how
the Greeks had laid siege to Troy, without any victory,
they pretended to retreat. But they had left behind a big
wooden horse, in which a number of Greek soldiers
had hidden themselves. A spy convinced the Trojans,
to move the horse inside the city as a war trophy. In the
night, the soldiers left the horse and attacked the Tro-
jans. This led to the Greek victory [2].

Today some writers of malicious programs try to
apply the same tactics as the Greek did with their
wooden horse. These malicious programs are called
Trojan horses or just Trojans.

A Trojan horse is a computer file that claims to be
something useful and desirable. The Trojan can either
provide the claimed features or just pretend to have
them. But under this layer of desirable functions, other
unexpected or unauthorized functions are hidden, like
the Greek soldiers in the wooden horse [3].

These unexpected and unauthorized functions do
purposefully something the user doesn’t expect. This
may cause unexpected system behaviour but even more
seriously a compromised security of the system. The
Trojan horse can affect the confidentiality, integrity
and the availability of the data on the computer. The
confidentiality is affected if the Trojan succeeds in
copying confidential data from the system to a not
trusted host. The integrity is affected if the Trojan
manages to modify the data on the attacked system.
The availability is affected if the Trojan makes it im-
possible for trusted users to access the data.

The biggest difference between Trojans and vi-
ruses/worms is that Trojans do not replicate them-
selves. This means that the Trojan does not copy itself

to other files in the system. Even if Trojans do not
replicate like viruses and worms, they can be just as
destructive [4].

Trojans need help from computer users to propa-
gate to new systems. The user must invite these pro-
grams onto the computer to get infected. Similarly to
what the ancient Trojans did when they invited the
wooden horse into the city Troy [5].

����� �������

A computer virus is a program that performs unau-
thorized actions, without the knowledge of the user.
The anti-virus company Symantec has defined two
criteria a program must meet to be classified as a com-
puter virus. These are:
• It must execute itself. It will often place its own

code in the path of execution of another program
[5].

• It must replicate itself. For example, it may replace
other executable files with a copy of the virus in-
fected file. Viruses can infect desktop computers
and network servers alike [5].
To meet the first criterion the virus must be at-

tached to executable code in files or memory. This will
result in the execution of virus code every time the
infected code is used. There are different ways to make
the execution process of the virus ����
���� to the user.
An often used approach in viruses is to turn over the
control to the original portion of the infected program,
when the execution reaches its end. The original pro-
gram will start and the user will probably not notice the
small, but a bit longer start-up time [6].

The second criterion is met when the virus attaches
itself to other files or memory areas.

Often the purpose of the virus is to deliver a pay-
load. The payload could just be an annoying routine to
present different types of messages to the user in im-
ages, audio, video or text. But more dangerous are
payloads with routines to: damage files or compro-
mising the security of the system. Even if a virus has
no payload it will cause trouble by consuming the
system resources. The virus will use memory and proc-
essing power thus degrading the overall performance
of the system [3]. The user might notice this if the
resource theft is too big.

In addition to Symantec’s definition of a computer
virus, we have seen that a virus can be noticed by dif-
ferent symptoms. The symptoms are not a criterion the
program must meet to be a virus. As the anti-virus
company McAfee states in their Virus Glossary:
“Some viruses display symptoms, and some viruses
damage files and computer systems, but neither symp-
toms nor damage is essential in the definition of a
virus; a non-damaging virus is still a virus” [4].

����� ����

A worm is a program that spreads to other comput-
ers through networks, without the use of an infected
host file [5]. An infected host file is a host file attached
with malicious code, for example a program infected
by a virus. A virus uses infected host files to infect new
systems. So if worms don’t spread by the help of in-
fected host files, how do they spread?

A worm spreads by creating a new file with a copy
of itself and then sending it to new computers. The file
is sent through email attachments or different types of
file transport protocols, for example the Internet Relay
Chat [4]. This means that the worm doesn’t need to
infect any host files on the attacked system to propa-
gate.

Worms need often very little human intervention to
propagate compared to Trojans and viruses. A user
needs to actively download the Trojan/virus-infected-
file to the computer and then execute it to infect the
system. In the case of worms the user just needs to
open a document containing the worm to get infected
and spread it further to everyone on his or her e-mail
list.

Sometimes there is even less human intervention.
Another way a worm can spread is through vulner-
abilities in the computers connected to the network.
These vulnerabilities are found in operating systems,
web servers, database servers, etc. The worm searches
the network for computers with vulnerabilities. There
are different types of vulnerabilities. Some make it
possible for a worm to execute malicious code directly
on remote computers. The worm doesn’t even have to
send a copy of itself in a file. It can reside in runtime
memory and propagate further to new hosts [6].

�� �� �!��������!��
������	�������"��	
�����	�#�$��������	
�"���%

A Trojan doesn’t replicate itself like viruses and
worms. The Trojan tries to fool users to make copies of
it, and spread it to other users. The success of this
tactic depends on how good its outer layer of useful or
pretended functionality is. The Trojan program is di-
rectly executed by the user.

A virus executes itself and replicates itself by in-
fecting program files on the computer. A virus in con-
trast to a Trojan, is not purposely executed by the user,
it is indirectly executed when the user runs a program
infected by the virus.

A worm doesn’t replicate itself by infecting pro-
gram files. The worm instead creates new files with a
copy of itself, and then sends the new copy to other
hosts, or it can replicate by executing itself directly on
the remote host through some vulnerability on the host.

��� ���&������	���!�
�

Malicious software has used different methods of
propagation during time. When the first viruses were
written it wasn’t common with computers connected to
each other by networks. Users who wanted to exchange
data or computer programs had to use removable me-
dia. (Removable media are transportable drives or
disks which are easy to move from one computer to
another.)

During this time viruses had to use removable me-
dia to propagate. The process looked like this. The
virus had to infect programs or the boot sector on the
removable media. When the media was moved to, and
mounted on the other computer, the user had to do a
step to finalize the propagation. This step could either
be to execute a virus infected program on the media or
to execute an infected boot sector on media [6].

As time went on new ways was developed to ex-
change information between computers. One of these
was to use bulletin board systems. Users could now
upload their files and download others from the system
via modems. In this case the process of propagation
starts when a user uploads an infected file to the BBS.
The process is finalized when another user downloads
the file and executes it [7].

Today computers are often connected to a local-
area network and/or the Internet. The human interven-
tion needed in the process of propagation of malicious
software is getting smaller and smaller, because the
process of propagation of files in general, between
computers, is getting easier and more automated.

����� ���&������	���������������
��'�"���

Worms are a group of malicious software that de-
pends on network connectivity as the method for
propagation. Worms are divided into three broad cate-
gories, in the paper -� ���� #���
.�)� /������ ��
����
. The paper names the groups: E-mail (and other
client application) worms, Windows file sharing
worms and Traditional worms [8]. The paper)���0��"
���� ��� 1�������� #���
 defines three propagation
carriers which worms use to spread from a computer to
another. The first is called ����(������
�and describe a
worm that “actively transmits itself as part of the in-
fection process”. The second carrier, ����	
� �!�		��
describe how some worms need to use “a secondary
communication channel” to download additional worm
code. The third, ���

�
� describe how a worm
“sends itself along as port of a normal communication
channel” [9].

We now look at different communication strategies
used by worms. How the strategies affect the speed of
propagation and the stealth properties. The Stealth

property measures how good a worm can hide itself
and pass undetected.

If a worm chooses the strategy to actively connect
to other computers and initiate communication, the
speed of the propagation might be high. As the speed is
getting higher the stealth property might be reduced.
This strategy is used when a worm wants to infect as
many computers as possible before anti-virus compa-
nies detect it and distribute new signature files to their
customers. If a worm chooses the opposite strategy, to
passively wait for a normal connection to another
computer, the speed of the propagation might be lower
in comparison. The worm’s stealth property is now
higher and this may give it a longer lifetime, before
detection and removal.

����� ���&������	��	
�!��	��	���$�	���	

Some worms need no or very little human inter-
vention to infect and propagate. Viruses and Trojan
horses need more human intervention because they
need to be transferred as a file from one computer to
another.

Humans are motivated and fooled to help the
propagation of malicious software by different social
engineering techniques. Trojans pretend to offer the
user something valuable, viruses depend on the value
of the infected file. E-mail worms use techniques to
trick the user to execute the worm with messages
which “indicate urgency”, “appeal to individuals’ van-
ity” or “appeal to greed” [9].

A website called ����-�!�
��� had an article about
why office workers help the propagation of malicious
software. There are different reasons among the work-
ers but they can be summarized as follows [10]:
• Not aware of basic virus prevention measures
• Too busy, they don’t check their emails before

opening them
• Believe that they have no part to play in prevent-

ing the spread of viruses
• No clue to how a virus-infected email might look

like
• Too busy, they don’t download anti-virus updates

��� ���������������������
��'�"���

For a worm to propagate it must discover which
machines to infect. It can do this in several different
ways. Scan based worms try to spread themselves by
randomly testing IP addresses. Another way it uses to
spread is through target lists. When using a target list,
the creator of the worm will create or obtain a list of
vulnerable hosts before releasing the worm. We will
look closer at the target lists.

One of the problems for a worm that want to spread
fast is that it grows exponentially. This means that it
grows slow in the beginning. Using a target list would
make the worm reach a high infection percentage faster
in the beginning. It could do this with the help of “hit-
list scanning”. When a worm first infects a host it be-
gins to scan down the first half of the target list. The
next infected host is infected and gets the lower half of
the target list. This process continues.

The hit-list can be obtained with several different
techniques. Among others, [11] mentions these inter-
esting:

����� ��������		�	�

The creator could port scan hosts during a long
time to make a hit list. There is a risk that the scanning
is discovered, but it is unlikely that it would lead to any
serious actions taken against the scanner. The creator
could also use the same methods as hackers use to
avoid being detected, for example connection through
proxy servers. Port scanning is an old method used by
hackers to discover vulnerable hosts. Tools and infor-
mation on port scanning are easily available on the
Internet.

����� ����������
����		�	�

An attacker could use already compromised hosts
as “zombie machines” making them scan for vulner-
able machines. Since the machines are compromised
the attacker doesn’t have to worry as much of detection
and could scan a lot more possible hosts.

�����)&�
���

A spider is a computer program that looks at web
pages and then visits the links of the webpage, and
makes indexes of the pages visited. It goes around the
“net” like a spider. This is the way search engines on
the net works. If the worm infects web servers it can
use spider methods to create a hit list.

����� ����������$�'�

If a security hole exists in a certain operating sys-
tem or web server a worm creator could use public
available listing. "http://www.netcraft.com"

�� �� �������$��

A metaserver holds a list of possible machines to
connect to for some applications. It is a match making
service. If, for example, a person wants to play a com-

puter game with some other person over the Internet,
he would use the server to see what other players there
are to connect to. A metaserver worm would query a
metaserver to discover new hosts to infect.

 �� �	������	���!�
�

There are a number of different types of infection
methods used by viruses and worms described in this
section.

 ���� *+���������,����$������

Here we describe the different methods used by file
viruses to infect executable files.

 ������ -�&�	��	�$����

A companion virus does not change the target file
directly. It tricks the user into running the virus pro-
gram instead of the real program by changing the name
of the target file and/or the virus file. The W32/Parrot-
A is an example of a companion virus. It renames all
.EXE files in the /WINDOWS directory to .PRT and
copies itself to the original filename. So when the user
for example runs calc.exe in the /WINDOWS directory
it will run the virus program instead of the calculator
[12].

 ������ .�	/�$����

A Link virus makes changes in the file system, so
that the name of the file no longer points to the real
file, but to the virus program.

 ������ 0$��"����	��$����

This is a very primitive form of virus, which simply
writes itself over the beginning of the infected file. The
original program file gets damaged and when you try
to run it all that happens is that the virus program is
run. This is a very primitive method used by early
viruses. Since it destroys the original program file it is
easy to discover that you have been infected. This
method is not often used anymore.

 ������ ����������$����

Parasitic viruses modify the contents of target files.
A prepending virus places all of its code at the top of
the original program so when you run the program, you
first run the virus code and then the original program
code. This way the user might not notice that he is
infected by a virus. Another approach is to insert a

jump operation at the beginning of the original pro-
gram and then jump to the virus code which is inserted
after the original program. After the virus program is
run it returns to the beginning of the original program,
and the original program is executed.

 ���� ����'�����
�	��$����

When some viruses are run they become resident in
memory. They can actively search for files to infect or
they can wait for another program to run and then
infect it using any of the methods described above.

 ���� �������	
�����&��$������

The (������"#��
���� 2������ $� ������� defines
the word ���� as: “short for �� ����
��� ������ a
single computer instruction that stands for a sequence
of operations” and defines the word ����&� as “a plan
of action” [13]. By these definitions you can draw the
conclusion that a “macro is a script”.

What are macros and scripts used for and where? In
the ���� for ���������� ���
� �11� you get the fol-
lowing description about macros: “If you perform a
task repeatedly in Microsoft Word, you can automate
the task by using a macro. A macro is a series of Word
commands and instructions that you group together as
a single command to accomplish a task automatically.”

In other words, a macro is a programming language
used inside documents to automate different tasks. If a
macro language has functions for executing itself and
replicating itself to other documents, this macro lan-
guage can be used to write macro viruses. The infec-
tion process of a macro virus can look like this: The
macro virus is automatically executed when an infected
document is opened, and the virus replicates itself by
copying the virus body to other documents on the
computer.

 ���� �����	������	���!�
�

Here we describe the different methods used by
worms to infect a host. Since a worm by definition
spreads itself over some network interface, we say that
the worm infects a “host”.

 ������ *(����"���

E-mail worms are programs that, when executed on
a local system, take advantage of the user’s e-mail
capabilities to send themselves to others. They try to
trick the user into executing not trusted files. The first
e-mail worms used local mail programs and/or mail
APIs on the compromised machine to send copies of

themselves. Later worms have their own SMTP engine,
which make them less dependent on the mail capabili-
ties of the compromised machine [8]. Some e-mail
worms search compromised computers for e-mail ad-
dresses, that it sends itself to.

 ������ ����"���

The P2P is short for Peer-to-Peer. P2P worms
spread through public file sharing systems such as
Kazaa. A typical P2P worm copies itself to some of the
shared folders used by the P2P program. It uses differ-
ent filenames to trick users on the network to download
it. Worms uses names of program files, pictures, songs
etc.

P2P worms are not hard to write. They can be
written in the Visual Basic Script language and doesn’t
require much technical or programming knowledge.
Source code examples are available on the Internet.

The W32.HLL.Sanker is a recent P2P worm. Some
of the names it uses are: hotmail_hack.exe, ea-games.
Keygen.exe, girls.jpg.exe [14].

 ������ ��	
�"��������!���	��"���

If a windows user wants to share files with other
users on the Local Area Network he can do this by the
peer-to-peer service that comes with Windows. The
end user is responsible for setting the security proper-
ties, which can make the shared drive configured in an
insecure way.

Many worms use the file sharing capability in ad-
dition to other methods. File sharing is often blocked
outside of a Local Network by a firewall, but can be an
effective method of spreading inside, for example, a
corporate network. The windows file sharing worms is
becoming more and more complex. The first ones just
searched the neighbourhood network for unprotected
drives and dropped files there. Later worms have had
the ability to crack passwords which are poorly chosen.

 ������ ���������"���

There haven’t yet been any wireless worms that
have made a large impact on the security community.
Some experts believe this is because of the heteroge-
neous nature of the devices used; different hardware,
different operating systems.

The Timofonica worm infected computers and send
emails to an e-mail-to-GSM gateway, and therefore
sending text messages to random cell phone numbers
[15].

 ��� �� ���
����	���"���

This group of worms requires no human interven-
tion to spread itself. It spreads by exploiting vulner-
abilities in software. The software that the vulnerability
is found in is often a operating systems. If a worm is
going to have any impact and be widespread it has to
have a lot of machines to attack and spread itself to.
This is why a vulnerability in an operating system is
serious; many users become potential targets.

A vulnerability can for example be a buffer over-
flow. It is interesting to note that most worms use
known vulnerabilities. The problem is that many users
aren’t aware that they have to download a patch to
make them not vulnerable. Long time after the security
community knows of a problem it can still be exploited
by a virus/worm.

Even security products can be attacked. The Witty
worm [16] exploited a buffer overflow vulnerability in
security products from ISS. The ISS products are sup-
posed to parse incoming ICQ packets. The witty worm
fooled them by pretending to be a ICQ packet and
could therefore spread over the Internet.

The first internet worm, the Morris Worm, from
1998 was a traditional worm. It spread by exploiting
vulnerabilities in the UNIX operating system.

 ���2�� ��������	����$�����
������	����!�
�

A worm can use several of the methods mentioned
above. The Nimbda worm had five different ways of
spreading itself: e-mail, windows file sharing, from
web server to client browsing and two different ways
to spread from a client browser to web server.

The way it spread from web servers to clients was
to infect all web content files on compromised servers.
This meant that a person surfing the net could un-
knowingly download a copy of the worm just by surf-
ing the net. By exploiting a vulnerability in Internet
Explorer some clients would automatically run the
downloaded file and be infected [17].

2�� *��
�	����!�
�

Malware use different ways to prevent detection
and removal. Here we will explain some of the meth-
ods.

2���� �������	���	��($���������"���

Some malware disables anti-virus and firewall pro-
grams to not be detected. The W32.Klez.H@mm [18]
worm, disables anti-virus scanners by stopping their
processes. It also deletes their checksum database files.

2���� 3���/�	��"���&����

A Version of the MyDoom worm [19] blocked us-
ers from accessing several web sites. Web sites in-
cluded Microsoft update sites, and several anti-virus
software sites. This was probably done to prevent users
from getting information on how to remove the worm.

2���� *	��'&��
�$������

Anti-virus scanners often use a special sequence of
bytes, a signature, to detect viruses and worms. To
avoid this virus writers began to encrypt their viruses.
A typical encrypted virus has a virus decryption rou-
tine and an encrypted virus body. When the virus is
run, the decryption routine first decrypts the virus and
then the decrypted virus body is run. To encrypt the
virus body the virus uses a different key every time,
making the virus body different from infection to in-
fection. Although the virus body is different the de-
cryption routine remains the same, which sometimes
makes it useful to use as a virus signature to search for
[20].

2���� 0������&!���$������

Since the encrypted virus has the same decryption
routine from infection to infection it can be detected.
An oligomorphic virus uses a different decryption
routine from infection to infection. An oligomorphic
virus can only create a finite number of different de-
cryption routines. The Win95/Memorial virus could
create 96 different decryption patterns. An oligomor-
phic virus could still be detected by an anti virus scan-
ner searching for signatures, but it would take longer
time [21].

2� �� ���'��&!���$������

A polymorphic virus is like an oligomorphic virus
but it can create an ����

 number of different de-
cryption routines. Like the encrypted virus it has a
decryption routine and an encrypted virus body. But
now the decryption routine is also encrypted, this is
done by a mutation engine (a mutation engine “gener-
ates randomised decryption routines that change each
time a virus infects a new program” [20]).

How is infection done? When an infected file is run
the virus decrypt both the virus body and the mutation
engine. A copy of the virus itself and the engine is
made in memory. The virus then calls the mutation
engine which creates a new decryption routine. This
routine is used to encrypt the virus and engine in the
RAM memory. And then the virus appends the new

decryption routine and the encrypted virus and engine
to a file. The first widespread polymorphic viruses
were found 1991 [20]. Viruses and worms still use
polymorphism to avoid detection. For example the
widespread Bugbear worm had a variant which used
polymorphism.

2� ���� 4�	�����
���'&���	

Polymorphic viruses can be detected by using ge-
neric decryption. According to [20] generic decryption
is based on three assumptions:
• “The body of a polymorphic virus is encrypted to

avoid detection”
• “A polymorphic virus must decrypt before it can

execute normally”
• “Once an infected program begins to execute, a

polymorphic virus must immediately usurp control
of the computer to decrypt the virus body, then
yield control of the computer to the decrypted vi-
rus.”
Based on this assumption a scanner can use generic

decryption to detect polymorphic viruses. It does this
by using a software virtual computer. When a program
file is going to be scanned to see if it is infected the
scanner loads the file into the virtual computer. In the
virtual computer the file is run. Remember that this is
in the virtual computer, so it can make no harm to the
“real” computer. If the file is infected it will run its
decryption routine first, which will decrypt the virus
body. The scanner will (hopefully) detect suspicious
virus-like behaviour and continue execution of the
virus. The scanner can search the body for known virus
signatures after the decryption routine is run. If the file
is uninfected it will show no virus-like behaviour and
the scanner will stop running the file in the virtual
computer [20].

The problem with generic decryption is speed. It
can take long time to decrypt the virus. How long can
the scanner wait before it should begin to scan the next
file. If it stops to early it might miss some virus. To
remedy this situation the anti-virus companies came up
with Heuristic-Based Generic Decryption [20].

2� ���� 5��������(3���
�4�	���������'&���	

Another method to detect polymorphic viruses is to
use heuristic-based generic decryption. This is generic
decryption with a set of rules, used to help scanners to
know when to stop scanning and when to continue. If a
file that is run makes some suspicious action then it
might be a virus and the scanner should continue. For
example a NOP instruction (telling the processor to do
nothing) is behaviour which tells us that we might be
dealing with a virus. On the other hand if the program

generates DOS interrupt it is unlikely that it is a virus.
The scanning continues as long as the scanner is not
sure that it is not a virus.

Heuristics can also be used to detect unknown vi-
ruses. If the level of virus-like code is above some
previously defined threshold, the scanner will report a
“possible infection” [22].

There are problems with heuristics, the biggest be-
ing that it may miss viruses. Virus authors will try to
make their virus look like non-malicious programs.
And the authors of the scanner will have to change
their heuristic to answer that.

There have been suggestion of other methods in-
volving Virus Cryptoanalysis [23], but when we wrote
this we found no information about any anti-virus
scanner using this method.

6�� -�������
'������$����

In this section we will describe what techniques a
particular virus use for infection and stealth etc. We
wanted to exemplify our definition of a virus. This was
a challenging task because even if there are categories
of malicious software, they are not mutually exclusive.
For example, sometimes viruses act like worms, by
propagating over networks [8].

We choose to study a virus from 1995 that follows
the definitions of a virus very well. The virus belongs
to the virus family Zhengxi. We pronounce the name
7!(�	�(+� (“�-�	�-�!-�”, � in �ewel, �	� in l�	�uage,
�! in �!urch and � in mach�ne). We will refer to
Zhengxi as “the virus” in this case study.

The virus is a very complex DOS virus with stealth
and polymorphic properties. It infects executables files,
object files and archives in the ARJ, RAR and ZIP
format. The archives are infected by appending a small
COM file with the virus to the archive [25].

The work of analyzing the virus has been done by
various anti-virus companies. We will summarize in
the following sections what these companies have
found out regarding this family of viruses. How they:
install and hide themselves, infect files, are triggered,
use anti-analyzing techniques. And finally who could
be the author of the virus.

6���� �!���	���������	�&������

The virus infects executable-, object- and archive
files. An encrypted version of the virus is stored in
these files. The start-up sequences differ a little bit
between the file types, but they will all end up in a
routine for the polymorphic decryption.

When the decryption of the encrypted version is
done the virus body receives the control. The virus
starts to look for signs telling it if the operating system

DOS is present on the computer. If it is, the virus
checks the system for more information. From this
information the virus decides if it will continue the
installation or terminate it.

The installation is terminated if: the date of the in-
fected file is near the current date, Microsoft Windows
is installed, an anti-virus scanner is running or the
computer is booted from a floppy (drive A or B) [24].

The installation continues to allocate memory for a
memory resistant copy of the virus. When the virus is
loaded into memory it modifies the interrupt handler
for 21h and 25h, so that the virus will intercept all calls
to these interrupts. From now on the virus moves
around in memory making it harder to be analyzed.

The installation is now finished and the virus lets
the host program execute, in the special case where the
installation was initiated from a COM-file the virus
prints “Abnormal program termination” [25].

6���� �!��������!�&������

In the installation, the virus modifies the interrupt
handler for 21h so that the virus will intercept calls to
this interrupt. The interrupt 21h is called often because
it has functions for file handling and memory man-
agement. When programs call these functions the virus
will return modified results to hide the presence of the
virus in memory [24].

To hide the presence in files which are opened for
writing, the virus disinfects the files, with some excep-
tions. The virus has a list of programs which are al-
lowed to open and write to infected files.

To hide the presence in files which are opened for
reading, the virus decrypts the original file and returns
it to the caller.

The virus hides itself also by returning modified
file lengths for infected files and make it sure that
programs cannot read outside this boundary [25].

6���� �!���	������	�&������

The virus randomly selects files to infect from the
set of file accessed via interrupt 21h. The virus termi-
nates the infection process if the file: is on a floppy
(drive A or B), is bigger then available disc space, is
dated near the current date or is not an executable,
object or archive file.

The virus infects an executable file either by ap-
pending, inserting or by adding a file to a self-
extracting file archive (ZIP etc).

The general idea behind the infection is to hide the
virus code in the file. This is done by using polymor-
phic encryption. The virus encrypts the file header and
the virus body and saves it to the end of the file. The

virus marks the file as infected by increasing the file
size until file size modulus 157 equals 37 [24].

When the file is executed the virus body is de-
crypted and executed. Finally the virus decrypts the file
header and hands over the control to the host file.

The virus infects by an inserting method when it
finds C or Pascal subroutines in an executable file. The
virus modifies a subroutine so it will execute the virus
body. The virus can be inactive during long periods of
time if the modified subroutine call is seldom executed
[25].

When the virus starts the infection process of an ar-
chive file, it checks that the archive isn’t already in-
fected. If it is not infected it creates a COM-file con-
taining random data, encrypted virus code and the
decryption routine. This file is then added to the ar-
chive by the virus which has all functionality needed to
add files to ARJ, RAR and ZIP archives [24].

6���� �!�����������	
�&�'���

When the virus finds a file in an archive packed
with the no compression method it looks at the date of
the archive. If the date has a year that equals to or are
higher than 1996, the virus deletes all files and directo-
ries on all drives [25].

6� �� ��
���������$���������	��'8�

Eugene Kaspersky tells in “Zhengxi: Saucerful of
Secrets” how the virus was analyzed. He describes five
techniques used by the virus author to make the analy-
sis harder, these were [26]:

1. Use of polymorphism
2. Concealing of real functionality by using “hundreds

of junk instructions” in the code
3. Use of different methods to access the same data in

the code. “Not even good disassemblers could build
the complete reference tables which are often so
useful in analysis”

4. Use of “��������� ��
 where the destination
address is concealed and may vary”

5. Use of checksums to “decide whether or not to
infect a file”. This makes it hard to figure out which
files the virus is searching for. (It is easy to calcu-
late checksums on data, but it is much harder to de-
duce from a checksum the set of data which gener-
ates the same checksum, and select possible candi-
dates.)

6�2�� �!��"����!�����!��%

Who was the author of this complex virus? It is not
publicly known who the author was. But by looking at
how complex the code was, it’s probably not a child.
This conclusion was drawn in a document presented at
the international Virus Bulletin Conference in 1996 by
Sarah Gordon. She says “it is easy to see that Zhengxi
is more of a programming exercise than a virus de-
signed to spread. Its author must have known that the
features which he was adding were just a display of
skill. Clearly, it is not the work of a child, but of a
programmer who could earn real money writing real
programs in the real world” [27].

9�� -�������
'���������

In January 2003 the Sapphire worm, also known as
SQLSlammer and W32.Slammer, began spreading on
the Internet.

The worm exploited a vulnerability in the Micro-
soft SQL Server 2000. The vulnerability was discov-
ered by NGSSoftware [16]. A vulnerability note was
posted by CERT on 26th of July, 2003 [28]. The vul-
nerability was a stack buffer overflow. The MSSQL
Server always listens on UDP port 1434. Clients can
send a request of one byte to that port to discover how
they should connect to the server. By using this stack
based buffer overflow the worm executes code with the
privileges that the Server had when it was started.

9���� 3��/����	
�)���/�0$�����"�

One common way for worms to spread is by ex-
ploiting some sort of overflow vulnerability.

In a classic article [29] the author “Aleph One”
shows how by “smashing the stack” you can return
from a routine to a random address. We will now give
you a short explanation of how stack overflows works,
which is needed for the understanding of the Sapphire
worm.

In the programming language C a buffer is often
represented by an array. A dynamic variable such as an
array is allocated at runtime on the stack (Static vari-
ables are located at load time). When a buffer/array is
overflowed it is filled with data outside of its bounds.
This can happen when you use some of the standard C
functions for copying and appending strings as for
example strcopy(), strcat() and sprintf(). This is possi-
ble because there are no built-in bounds checking in C.

When a program calls a procedure it saves the re-
turn address on the stack. By overflowing the buffer
that also is located on the stack a new return address is
written over the old one. When the procedure returns it

looks at the return address and jumps there. By doing
this the attacker gets control over the execution.

The attacker also needs some way to insert the code
that he wants to be executed. This is simply done by
putting the code in the buffer that will be overflowed.

9���� �!��)�&&!��������/��$�����"

The MSSQL Server always listens on UDP port
1434. When it receives a packet with the first byte set
to 0x04 it takes the remaining part of the packet and
tries to copy it to a stack based buffer. If a large num-
ber of bytes are appended to the packet the buffer is
overflowed and the return address from the stack is
overwritten. This gives the worm control of the execu-
tion, with the same rights as the MSSQL Server had
when it was running.

9���� 3��/����	
��'	����.�	/�.��������

The worm needs to use some pre-defined proce-
dures to do its work. It needs to send packets and it
needs some random number that it uses to generate IP
addresses. It uses a DLL-file. To do this it uses the
functions in the ws2_32.dll file that comes with the
Windows operating system. Here is Webopedia’s [30]
definition of what a DLL is:

Short for Dynamic Link Library, a library of executable
functions or data that can be used by a Windows application.
Typically, a DLL provides one or more particular functions and
a program accesses the functions by creating either a static or
dynamic link to the DLL. A static link remains constant during
program execution while a dynamic link is created by the
program as needed. DLLs can also contain just data. DLL files
usually end with the extension .dll,.exe., drv, or .fon.

A DLL can be used by several applications at the same
time. Some DLLs are provided with the Windows operating
system and available for any Windows application. Other DLLs
are written for a particular application and are loaded with the
application.

The procedures the worm needs are available in the
library file ws2_32.dll, a file that contains the Win-
dows Sockets API used by most Internet and network
applications to handle network connections [31].

9���� 3��/����	
��&�����

����������

Before the worm can use the procedures in
ws2_32.dll it has to load the dll file into its memory.
How does it do this? It uses the LoadLibraryA proce-
dure. The LoadLibraryA procedure is a function that
exists in the kernel32.dll file. The kernel32.dll is a file
that is run as a Windows Kernel Process. This gives all
windows programs access to its functions.

But how does the worm access the LoadLibraryA
procedure in this process? It uses the Import Address

Table of the sqlsort.dll library. Here is a definition of
IAT [32]:

Every win32 executable application has an Import Address
Table (IAT) residing inside the program. The IAT is used as a
lookup table when the application is calling a windows API
function.

There are many MS Windows operating systems, and they
all have different addresses for their API functions, because of
different structured DLLs. When an application starts, it has a
list of all functions that aren’t originally part of the application.
These functions, called imports, are located in the operating
systems DLLs, but the application doesn’t know where. So
before starting, it has to build the IAT table by finding the
address of the API it wants to call.

“Calling a windows API function” is exactly what
the worm does, so the IAT is useful here.

9� ��)�&&!������
���$��$��"

This section is based on [33], [34] and [35], in
which you will find the whole source code with com-
ments.

Before we describe step by step what the Sapphire
worm does we will show you a high level interpreta-
tion of the code. This code is from Symantec’s Analy-
sis [33] (We have added the two first steps: “Get con-
trol” and “Build packet”):

::���4�����	�����
[get control]
::���3���
�&��/���
[build packet]
::���4���!�	
����������������������!��
::������	����	�������&����
�����
Ws2_32handle = LoadLibrary(“ws2_32.dll”);
Kernel32handle =LoadLibrary(“kernel32.dll”);
::���.��
�4�����/-��	�;<#��	
���������
::������	
������

�����"��!��!���$�����
getprocAddress(kernel32handle, “GetTickCount”);
IpAddress = GetTickCount();
:: ��)��/�������&
[Socket setup]
::2��)������	��	�������&������	�����	���
::����	�"�����

����#��	
������/�	��
While (true) {
 IPAddress = generateRandom(IPAddress);
 Send Copy of Self through UDP
}

9�2��)�&&!����
�����&���	

This is a more detailed description of the code seen
in Sapphire code overview.

9�2���� 4�����	����

The worm overwrites the return address and gets
control of the processor.

9�2���� 3���
�&��/��

The first thing the worm does is to start building
the packet that will be sent to other computers. It builds
the packet on the stack. Some part of the worm is al-
ready on the stack. This part is marked [worm body] in
the text below. The worm needs to rebuild its header
section, because it can become corrupted.

First it loads the address of a “jmp esp” instruction.
This is the address that will overwrite the real return
address. It points to a “jmp esp” instruction in
SQLsort.dll.

Then it loads a lot of garbage onto the stack. Re-
member that now the worm is building the packet that
is going to be sent to the next victim. This garbage is
needed so that the new return address overflows the
exact location of the old return address, when the
buffer later will be overflowed.

At the end of the garbage, the worm pushes a 0x04
byte onto the stack. This is required to be at the start of
the malicious UDP Packet. The 0x04 byte tells the IIS
server what kind of packet it should receive. By telling
the server that it is a packet of “kind” 0x04 the server
will go to the vulnerable code with the buffer overflow.

Now the stack looks like this:
[worm body] Part that doesn’t need rebuilding.
42B0C9DC The return address.
GARBAGE
GARBAGE
0x04 The start of the packet

9�2���� 4���!�	
����������������������!�����	����	�
�����&����
����

Again, this is what the worm does in a high level
language:

Ws2_32handle = LoadLibrary(“ws2_32.dll”);
Kernel32handle = LoadLibrary(“kernel32.dll”);

To do this the worm will first load some strings on
to the stack that it will need during the remaining exe-
cution.

Now the stack looks like:
[wormbody]
0x42B0C9DC
GARBAGE
GARBAGE
0x04
‘kernel32.dll’
‘GetTickCount’
‘ws2_32.dll’
‘socket’
‘sendto’

Now the worm uses the LoadLibrayA function to
load the ws2_32.dll into memory. It saves the handle
(Base address) to the file on the stack.

Then it pushes a string pointer for ‘GetTickCount’
onto the stack for later use.

Then it uses the LoadLibraryA function to load the
kernel32.dll into memory and saves the handle (Base
address) to the file on the stack.

The stack now looks like:
[wormbody]
0x42B0C9DC
GARBAGE
GARBAGE
0x04
‘kernel.dll’
‘GetTickCount’
‘ws2_32.dll’
‘socket’
‘sendto’
[base address of ws2_32.dll]
[pointer to ‘GetTickCount’]
[base address of kernel32.dll]

9�2���� .��
�4�����/-��	�;<#��	
���������
� ��	
������

�����"��!��!���$�����

This is what the worm does in this stage:
getprocAddress(kernel32handle, “GetTickCount”);
IpAddress = GetTickCount();

First it loads the entry for GetProcAddress from the
IAT in sqlsort.dll

Then it Calls the function GetProcAddress with the
parameters kernel32_base and GetTickCount. Here it
uses the pointer to the ‘GetTickCount’ string that was
stored above. The GetProcAddress call returns the
address to the function GetTickCount(). This address is
used to call the GetTickCount. This function returns a
random number which will be used as a seed for the
worm’s random number generator later. The worm
saves this number on the stack. But before this number
is pushed the worm pushes 8 zero bytes to the stack
that will be used later to store an address.

The stack now looks like:
[wormbody]
0x42B0C9DC
GARBAGE
GARBAGE
0x04
‘kernel.dll’
‘GetTickCount’
‘ws2_32.dll’
‘socket’
‘sendto’

[base address of ws2_32.dll]
0x00000000
[pseudo random seed]

9�2� ��)��/�������&

A socket address of this type will be built:
Struct sockaddr_in {

short sin_family; // Protocol type
ushort sin_port; // Port number of socket
struct in_addr sin_addr; // IP address
char sin_zero[8]; // unused

}

This is what the worm does:
// Use the type AF_INET, which means
// IP addressess to locate a computer
sin_family = 2;
// This is the port the worm sends the UDP
// packet to and also the port the server listens to
sin_port =1434;
getprocAddress(ws2_32-handle, “socket”);
getprocAddress(ws2_32-handle,”sendto”);

The worm first pushes the sin_family value and the
sin_port value onto the stack. It then locates the ad-
dress of the ‘socket’ API call with the GetProcAddr
like above. Then it creates a UDP Socket with the
socket API call and locates the sendtofunction like
before.

9�2�2��)������	��	�������&������	�����	����	�"����
�

����#��	
������/�	��

This is what will be done:
While (true) {
IPAddress = generateRandom(IPAddress);
sendto(
 socket s,
 const char FAR *buf,
 int len,
 int flags,
 const struct sockaddr FAR * to,
 int tolen);
}

The target IP addresses are generated with a ran-
dom seed and mathematical combinations.

The parameters:
S= the socket descriptor to the socket that was cre-

ated in step 5.
buf=address on the stack where the packet that the

worm have built begins. It is the address where the
0x04 byte is.

Len=376, the packet to be sent is 376 bytes.

Flags=0, no special behaviour by the UDP packet.
To=The address to the sockaddr_in structure cre-

ated in step 5.
Tolen=10h, the structure is 16 bytes in length.

9�6�� -��	��

The Sapphire worm exploited a vulnerability in
software from Microsoft. This was in January 2003.

During the writing of this paper a new worm
emerged on the Internet. The Sasser worm began
spreading on the 1 May 2004. See [36] for a good
analysis.

We have no exact number on how many computers
that have been infected by Sasser, but a few days after
the outbreak numbers varied between 300 000 and a
million infected hosts. Several companies have had
their daily operations disturbed [37].

Sasser exploits a vulnerability in Microsoft Win-
dows XP/2000. We think this demonstrates that worms
exploiting vulnerabilities in widespread software will
continue to be a big problem unless some action is
taken to prevent this. We see two possible solutions to
the problems: 1) Users becoming more security aware.
2) Software companies making safer software.

9�6���� �=����������	�������������'��"���

The Sapphire worm (and the Sasser worm) could be
avoided by applying a patch from Microsoft. We think
that the number of infected machines demonstrate that
many users don’t look for updates on a regular basis.

Another way to protect against worms is to use a
firewall, which blocks ports often used by worms.
Installing and managing firewalls can be very difficult
and may therefore not a solution that fits the every
home user.

9�6����)���"������&�	�����/�	������������"����

Sapphire and Sasser would probably not exist today
if the software had been more thoroughly tested for
vulnerabilities before it was released.

>�� ����	����	�����	��������$����!�

The definition of the word effective in 1�����
�1�"
����� 3�!��
��$� �������� ����)��� �� 4������
� [38]
is: “Something that is effective works well and pro-
duces the results that were intended.” We therefore
define an effective method as “A method that works
well and produces the results that were intended.”

�1��*������$��$������:"������!�
�

We define an effective virus/worm as a virus/worm
that has effective methods for propagation, eluding and
infection.

�1���� *������$��&��&������	���!�
�

By definition a virus doesn’t actively spread itself
to other computers like worms do. The virus propa-
gates passively by the copying of virus infected files
from one computer to another. We believe that a virus
can propagate more effectively if it chooses to infect
files with a big probability of being copied. For exam-
ple if a computer is running file sharing programs it
would be more effective to infect files in the shares
rather than seldom used files that are not shared.

There are different types of worms. Some depend
on the success of social-engineering techniques other
on vulnerabilities found on computers. Out conclusion
is that these worms depend on “passive humans”. For
example “passive humans” do not check their e-mails
for viruses before opening them. They don’t apply the
latest software updates, thus letting vulnerabilities exist
in the system.

The most effective propagation method depends on
the target. If the target is users that are hard to fool then
it might be better to look for vulnerabilities in their
computers. On the other hand if it is easier to fool the
users than finding vulnerabilities, this would be the
more effective method.

�1���� *������$���	������	���!�
�

In the case study of the Zhengxi virus we saw that
it infects different types of files: executables, com-
pressed executables, object files and archives. We
think this virus is a good example on how an effective
infection method should work. The strategy of infect-
ing files in a computers file share is more likely to
succeed if the infection methods support many types of
file formats. A virus missing archive support can not
infect archive files in a file share thus less effective
compared to viruses like Zhengxi!

�1���� *������$�����
�	����!�
�

Some malicious software use eluding methods to
hide its presence from anti-virus software/users. The
Zhengxi virus used polymorphic encryption to hide
itself in files. While the virus was running in memory it
used stealth techniques to conceal its memory-usage
and the increased file length in infected files. The virus

even disinfected in some cases infected files in order to
be undetected.

The virus tries to elude the anti-virus companies
when they analyze it. This is done by using techniques
as “hidden branches” etc. It is probably harder to come
up with a countermeasure to a virus if it is hard to
analyze. This gives the virus more time to propagate
before countermeasures can be taken.

����*������$�����	����������

We define an effective countermeasure as a coun-
termeasure that has effective methods against propaga-
tion, eluding and infection.

������ *������$����!�
������	���&��&������	

One method to propagate malicious software was to
infect file shares on computers. We think that one
effective countermeasure to this threat would be to
prevent write access to the files in the shares. We have
never heard about situation when users want to modify
files in share folders. How often do users patch MP3-,
movie- or program files that they share? No, they don’t
but malicious software would probably do it!

Nowadays malware often use the Internet to propa-
gate. A good countermeasure against this threat would
be to scan and block malware with a firewall. The
firewall finds malware by matching the attachments
against signature files. But what about if the attach-
ment is a malware hidden inside an encrypted archive?
There is no risk whatsoever to get infected by an en-
crypted archive if you don’t know the unlock key. The
user must decrypt the archive with the unlock key and
then execute the malware. If the unlock key is a part of
the e-mail message to the user, the firewall can try to
use parts of the message body to decrypt the attach-
ment. If it finds the unlock key it may scan the attach-
ment for malware.

������ *������$����!�
������	����	������	

We believe that a good method against infection is
to run programs in a sandbox, in which you specify
which files individual programs are allowed to
read/write or execute. If a certain program tries to
break one of these rules the users should be notified
about this.

Worms use vulnerabilities such as buffer over-
flows. An effective countermeasure against this threat
would be to install memory guards either in software or
in hardware to prevent programs to write outside buff-
ers.

������ *������$�����
�	����!�
�

The eluding method used by the Zhengxi virus was
to redirect some operating system calls to it. The virus
modified the results from these calls to hide the virus
existence. We think that a good countermeasure
against this method would be to protect the operating
system against modifications.

����?�����	���

[1] BBC News, “Why people write computer viruses”,
http://news.bbc.co.uk/go/pr/fr/1/hi/technology
/3172967.stm,
2004-03-24.

[2] Micha F. Lindemans, ”Trojan Horse”,
http://www.pantheon.org/articles/t/trojan_hors
e.html,
2004-04-14.

[3] Trend Micro, “Virus Primer”,
http://www.trendmicro.com/en/security/general/
virus/overview.htm,
2004-03-24.

[4] McAfee, “Virus Glossary”,
http://us.mcafee.com/VirusInfo/VIL/glossary_ap
p.asp,
2004-03-24.

[5] Symantec, “What is the difference between viruses,
worms, and Trojans?”,
http://service1.symantec.com/SUPPORT/nav.nsf/p
fdocs/1999041209131106,
2004-02-10.

[6] Princeton University, “How Computer Viruses Spread”,
http://www.princeton.edu/~protect/BasicConcept
sAndTips/Viruses/HowComputerVirusesSpread,
2004-04-06.

[7] Wikipedia, “Computer virus”,
http://en.wikipedia.org/wiki/Computer_virus,
2004-04-06.

[8] Darrell M. Kienzle, Matthew C. Elder, “Recent Worms:
A Survey and Trends”,
http://portal.acm.org/citation.cfm?id=948189&d
l=ACM&coll=portal,
2004-04-06

[9] Weaver, Paxson, Staniford, Cunningham, “A Taxonomy
of Computer Worms”,
http://www.cs.berkeley.edu/~nweaver/papers/tax
onomy.pdf,
2004-04-06

[10] The Register, “Clueless office workers help spread
computer viruses”,
http://www.theregister.co.uk/2004/02/06/cluele
ss_office_workers_help_spread/,
2004-04-06.

[11] "How to 0wn the Internet in Your Spare Time",
http://www.icir.org/vern/papers/cdc-usenix-
sec02/cdc.web.pdf,
2004-04-07

12 Sofos virus analysis: W32/Parrot-A,
http://www.sophos.com/virusinfo/analyses/w32pa
rrota.html,
2004-04-06.

[13] Merriam-Webster Online Dictionary,
http://www.m-w.com/,
2004-04-06.

[14] Symantec W32.HLLW.Sanker worm,
http://securityresponse.symantec.com/avcenter/
venc/data/w32.hllw.sanker.html,
2004-04-06.

[15] ZDNet, “Got a bug in your ear”,
http://zdnet.com.com/2100-11-
521320.html?legacy=zdnn,
2004-04-06.

[16] NGSSoftware Insight Security Research Advisory,
http://www.nextgenss.com/advisories/mssql-
udp.txt,
2004-04-06.

[17] CERT Advisory CA-2001-26 Nimda worm,
http://www.cert.org/advisories/CA-2001-
26.html,
2004-04-06.

[18] Symantec W32.Klez.H@mm worm,
http://securityresponse.symantec.com/avcenter/
venc/data/w32.klez.h@mm.html,
2004-04-06.

[19] Sofos virus analysis: W32/MyDoom-B,
http://www.sophos.com/virusinfo/analyses/w32my
doomb.html,
2004-04-06.

[20] Symantec, “Understanding and Managing Polymorphic
viruses”,
http://securityresponse.symantec.com/avcenter/
reference/striker.pdf,
2004-04-06.

[21] Péter Ször, Peter Ferrie, “Hunting for Metamorphic”,
http://www.peterszor.com/metamorp.pdf,
2004-04-07

[22] Network Associates, “Advanced virus detection Scan
Engine and DATs”,
http://www.bytware.com/press/scan_engine.pdf,
2004-04-06.

[23] Mircea Ciubotariu, Virus Bulletin November 2003,
“Virus Cryptoanalysis”,
http://www.virusbtn.com/magazine/archives/2003
11/cryptoanalysis.xml,
2004-04-06.

[24] NOD32, ”Virus Encyclopedia”,
http://ve.nod32.ch/viruses/z/zhengi.php,
2004-04-07.

[25] Kaspersky Lab, ”Virus Encyclopedia”,
http://www.viruslist.com/eng/viruslist.html?id
=2638&printmode=1,
2004-04-27.

[26] Virus Bulletin, Kaspersky, ”Zhengxi: Saucerful of
Secrets”,

http://www.virusbtn.com/magazine/archives/pdf/
1996/199604.PDF,
2004-04-07.

[27] IBM, Gordon, ”The Generic Virus Writer II”,
http://www.research.ibm.com/antivirus/SciPaper
s/Gordon/GVWII.html#NEWAGE,
2004-04-07.

[28] US-CERT Vulnerability Note VU#484891,
http://www.kb.cert.org/vuls/id/484891,
2004-04-06.

[29] “Smashing The Stack For Fun And Profit”,
http://www.shmoo.com/phrack/Phrack49/p49-14,
2004-04-06.

[30] Webopedia Computer Dictionary,
http://www.webopedia.com/TERM/D/DLL.html,
2004-04-06.

[31] LIUtilities WinTasks DLL Library,
http://www.liutilities.com/products/wintaskspr
o/dlllibrary/winsock/,
2004-04-06.

[32] The Free Dictionary,
http://encyclopedia.thefreedictionary.com/Impo
rt%20Address%20Table,
2004-04-06.

[33] Symantec SQLExp SQL Server Worm Analysis,
http://securityresponse.symantec.com/avcenter/
Analysis-SQLExp.pdf,
2004-04-07.

[34] Matthew Murphy, “Analysis of Sapphire SQL Worm”,
http://www.techie.hopto.org/sqlworm.html,
2004-04-07.

[35] SAPPHIRE WORM CODE DISASSEMBLED,
http://www.eeye.com/html/Research/Flash/sapphi
re.txt,
2004-04-07.

[36] Sasser worm analysis,
http//www.lurhq.com/sasser.html,
2004-05-06.

[37] New victims for Sasser net worm,
http://news.bbc.co.uk/2/hi/technology/3683553.
stm,
2004-05-06.

[38] Collins COBUILD English Dictionary for Advanced
Learners, HarperCollins Publishers 2001.

