
Secure Communication: Is it possible with SSL and or SSH?

Edvard Wikström Supervisor,
edvma905@student.liu.se Tina Lindkvist, tina@isy.liu.se

TDDC03 Information Security Project

Linköping University
May 8, 2004

Abstract

The purpose of this project is to gather information
about SSL and SSH as tools for security
communication and present them in relation to their
features, usability and vulnerabilities. Short
instructions of installation and configuration will be
presented for both technologies, this will only provide
the necessary information to get a quick start. The
focus is directed towards vulnerabilities and attacks
against these utilities. SSL and SSH are both among
the most used methods for transporting information
securely through networks. The conclusion is that they
offer good security in open networks if proper
configuration and updates are applied

1. Introduction

Secure communication is essential for exchange of
sensitive information. For a long time weak protocols
like Telnet, FTP, the old UNIX utilities, rlogin, rsh
and rcp have been used but they do not provide a
secure way for the interchange of data. The growth
and broad expansion of the World Wide Web has
changed its intended use from the beginning. More
and more businesses have established online-shops,
banks allow their customers to connect to their website
and make transactions instantaneously. This new e-
commerce era is changing the way we purchase
products and services. In this document I will present
and analyze two methods for the secure interchange of
information in open networks. The objective with this
document is to answer three questions about these
tools:

• How easy are they to use?
• How secure are they?
• Do you need to be an expert to use them?

2. Formatting your paper

This document will analyze the SSH and SSL
protocols for secure communication. To achieve this,
white papers and information from reliable sources
related to this domain have been studied. Descriptions
of how the protocols work and their vulnerabilities are
presented in sufficiently detail to understand their
weaknesses.

3. SSL

3.2 Background

The SSL protocol is intended to provide a practical,
application-layer, widely connection oriented
mechanism for Internet client/server communication
security developed by Netscape. To use the SSL
protocol, the host computer, the client, must be
equipped with an SSL Certificate. A digital certificate
is an electronic message that verifies that a user
sending a message is who he or she claims to be, and
to provide a way to the receiver the means to encode a
reply. A digital certificate contains the public key of
the certificate holder and a variety of other
identification information. Digital certificates are
issued by a Certificate Authority, such as VeriSign [1],
which are trusted third-party sources that have been
authorized by banks, governments and other
institutions to guarantee the identity of the holder of
the certificate.

SSL works by using a public key to encrypt data
that is transferred over the SSL connection. The
biggest browsers like Internet Explorer, Netscape,
Mozilla and Opera supports it. Currently two versions
of SSL are available, 2.0 and 3.0. Many websites use
the protocol to obtain confidential information, such
as credit card numbers. By convention, URL: s

(Uniform Resource Locator) that requires an SSL
connection starts with https:// instead of the normal
http://. Today, SSL has become the de facto standard
for cryptographic protection of Web http traffic.
Improvements and development to the protocol is
made by the IETF TLS (Transport Layer Security)
workgroup. Its is defined by RFC 2246.

3.2 Features and functionality

The SSL protocol runs above TCP/IP and below

high-level application protocols such as HTTP or
IMAP. It uses TCP/IP on behalf of the higher-level
protocols, and allows an SSL-enabled server to
authenticate itself to an SSL enabled client, at the
same time the client authenticates itself to the server
and allows both machines to establish an encrypted
connection. SSL client authentication allows a server
to confirm the user�s identity using the same
techniques as those used for the server.

The fundamental steps for the SSL protocol are the

following:

• SSL server authentication � allows a user to
confirm a server�s identity. The SSL enabled client
software can use standard techniques of public key
cryptography to check that a server�s certificate
and public ID are valid and have been issued by a
certificate authority (CA) which is listed in the
client�s list of trusted CA: s. This confirmation is
important if the user sends the credit card number
to the server. It also allows the client and server to
select the cryptographic algorithms or ciphers
supported by both parts.

• SSL client authentication allows a server to
confirm the user�s identity. Using the same
techniques as those used for server authentication,
SSL enabled server software can check that a
client�s certificate and public ID are valid and have
been issued by a certificate authority (CA), listed
in the server�s list of trusted CA: s. This
confirmation is important if the server sends
confidential financial information to a customer.

• An encrypted SSL connection requires all
information sent between a client and a server to
be encrypted by the sending software and
decrypted by the receiving software, thus providing
a high degree of confidentiality. Confidentiality is
important for both parties to any private
transaction. In addition, all data sent over an

encrypted SSL connection is protected with a
mechanism for detecting tampering, whether data
has been altered in transit.

The picture below shows where the SSL layer is
placed in relation to the other layers in the protocol
stack.

There are a great number of SSL implementations;

here is a list of the most common companies and
organizations providing SSL implementations:

• Cisco
• Sun
• IBM
• SSL.com
• OpenSSL � open source.

OpenSSL is an open source variant widely used in

both the open source community and in the
commercial world due to its attractive license.

The SSL protocol consists of two sub-protocols, the
SSL record protocol and the SSL handshake protocol.
The record part defines the format used to transmit
data, the handshake part involves using the SSL
record protocol to exchange a series of messages
between an SSL enabled server and an SSL enabled
client at the establishment of a connection. The
exchange of messages is designed to facilitate
the following actions:

More specifically, the record layer provides

confidentiality, authenticity and replay protection over
a connection-oriented reliable transport protocol such
as TCP. The handshake layer which takes care of the
key-exchange which initializes and synchronized
cryptographic state at the two endpoints of
communication.

Both SSL 2.0 and 3.0 protocols support
overlapping sets of ciphers suites. These can be
enabled or disabled by an administrator. When a client
and server exchange information during the SSL
handshake, they identify the strongest enabled cipher
suit they have in common for the SSL session.

These ciphers below are used to authenticate the
client and server, transmit certificates and establish
session keys.

• DES - Data Encryption Standard, an encryption
algorithm used by the U.S Government.

• DSA - Digital Signature Algorithm, part of the
digital authentication standard used by the U.S
Government.

• KEA - Key Exchange Algorithm, used for key
exchange by the U. S Government.

• MD5. Message - Digest algorithm developed by
Rivest.

• RC2 and RC4 - Rivest encryption ciphers
developed for RSA Data Security

• RSA - A public key-algorithm for both
encryption and authentication. Developed by
Rivest, Shamir and Adleman

• RSA key exchange - A key-exchange algorithm
for SSL based on RSA.

• SHA-1- Secure Hash Algorithm, a hash function
used by the U.S Government.

• SKIPJACK- A classified symmetric-key
algorithm used by the U.S Government.

• Triple-DES � DES applied three times.

3.3 Installation and Configuration

All major browsers and e-mail clients have SSL
enabled by default. No installation or configuration is
necessary to get started. Of course, a preferred
algorithm or cipher to use for communication is
possible to configure in some applications.

3.4 Usability

The nice thing about SSL is that its use is almost
transparent to the user. Having a SSL capable browser
or e-mail client it�s all that is needed, which today
applications supports by default. When connecting for
the first time to a server requiring SSL, it will first ask
you to download a certificate so you can verify your
identity from then on. This is normally done by
entering some credentials validating the user. If this
verification step is approved the server sends to the
client a certificate. The user simply needs to check
that the certificate comes from the claimed source by
inspecting the information presented. If the source is
trusted, accepting the certificate is all that is required.
Further visits to the server will not ask for the
certificate again, the browser will automatically take
care of it. The user needs to be aware of the padlock
icon in the bottom corner of the browser which
indicates that a secure connection with SSL is taking
place.

Recently, the simplicity of SSL has caused a vast

amount of new VPN (Virtual Private Network)
products to use SSL as the communication protocol
instead of the IPSec (IP Security) protocol. With IPSec
special software is normally needed at the client and
server side, careful and detailed configuration makes it
an inappropriate solution compared to SSL based
VPN: s.

3.5 Vulnerabilities

SSL is not invulnerable. It has shown a vast
number of flaws during the years. I will only name the
most serious ones implicating different
implementations of the SSL protocol. A paper from
the security expert Bruce Schneier and David Wagner
[2] gives an analysis of the cryptographic strength of
the SSL 3.0 protocol. A number of flaws in the
protocol are presented, but his conclusion is that it is a
good improvement compared to the SSL 2.0 version.
As we will see, other vulnerabilities were found and
exploited. I will first present the different possible
attack to be made on both versions.

1. Version rollback attack:

The SSL 2.0 protocol contains more flaws and

vulnerabilities than the 3.0 version. The 3.0
implementations are likely flexible enough to accept
SSL 2.0 connections, at least in the short term. This
threatens the potential for version rollback, where an
opponent modifies a SSL 3.0 client hello messages to

look like SSL 2.0 message and proceeds to exploit any
of the numerous vulnerabilities that exist in SSL 2.0.
Another related problem is the possibility to resume a
session initiated with the SSL 3.0 protocol with a SSL
2.0 client, this could have subtle and obscure
implications.

2. The ciphersuite rollback attack:

An active attacker can force both endpoints of
communication to use a weaker form of encryption
than they otherwise would choose. This is done by
editing the cleartext list of ciphersuit preferences in
the hello messages by the attacker. This kind of attack
was rather simple to execute. Fortunately this flaw was
fixed with SSL 3.0.

3. Key-exchange algorithm rollback attack:

A server can send short-lived public key
parameters, signed under its long term certified
signing key, in the server key-exchange messages.
Several key-exchange algorithms are supported, like
ephemeral RSA and Diffie-Hellman public keys. The
problem relies on the signature used on the short-lived
parameters, it does not protect the field which
specifies which type of key-exchange algorithm is in
use. Not only should it sign the public parameters but
also the relevant data to interpret those parameters.
This can lead to secrets exchanged by the server and
client to be compromised, which can spoof the rest of
the key exchange, including forging finished messages
to both endpoints. Therefore an attacker could decrypt
all the sensitive application data on the SSL
connection.

4. Remote Timing Attack:

Timing attacks enable an attacker to extract secrets
maintained in a security system by observing the time
it takes the system to respond to various queries [7].
This attack exposes the secret keys used for RSA
decryption. To accomplish this, the use of statistical
techniques and careful measuring of the amount of
time required to complete an RSA decryption
operation on known cyphertext can reveal one of the
factors (q) of the key. With the public key and the
factor (q), the attacker can compute the private key.
This kind of attack was proved to be successful with
the OpenSSL library [3].

Here follows the vulnerabilities that have been
actually found on the different implementations.

A very serious vulnerability in the OpenSSL

version 2 caused by a client-exploitable remote buffer
overflow in the handshake process, was the reason
behind the Slapper worm that spread in the Linux
community in September of 2002. This
implementation of SSL was used in the popular
Apache Web server. More than 6700 severs were
affected by creating a peer-to-peer network among the
infected computers resulting in a DDoS (Distributed
Denial of Service) attack. This caused many corporate
Internet connections to be shut down and unavailable.

In March 2004, the development group behind

OpenSSL found two serious flaws. Both fall into the
DoS category. In the first one a remote attacker could
exploit a Null-pointer assignment to perform a SSL
handshake which would crash the server [8]. The
second one is related to the handshaking code when
using Kerberos cipher suites. A remote attacker could
perform a carefully crafted SSL/TLS handshake
against a server using Kerberos causing it to crash.

In April 2004, working exploits were found for the

Windows SSL/TLS implementation in the ISS
(Internet Information Server) software that resulted in
DoS (Denial of Service) attacks [4]. The exploit,
known as the SSL Bomb, would send malformed SSL
packets which could force Windows 2000 and XP
machines to stop accepting SSL connections and a
Windows 2003 machine to reboot. This exploit could
also be used to compromise the servers by executing
remote code.

3.6 Conclusions

Despite the amount of vulnerabilities, SSL is today
the preferred solution to protect data when clients
connect to Web-servers on the Internet. There is
currently no other alternative that offers the simplicity
and security of SSL. Its ease of use makes it a
favorable solution. Due to its broad use, improvement
and enhancements are continuously being made. SSL
is getting more attention in VPN solutions, proving
the utility and maturity of the protocol in secure
communications.

One problem with the certificate which SSL uses to

identify the parties is that certificates can be forged
and misused [5]. A malicious sever could impersonate

the identity of a well known server and send a forged
certificate to the client. Warning windows supposedly
to inform the user about suspicious behavior can be
spoofed by the malicious server [6]. It can also be
difficult for normal and inexperienced user how to
verify the authentication of a server for the first time.

The proper use of SSL demands that the user reacts

correctly to all possible security notifications, which
could be misunderstood or hard to understand. The
user must be aware that the server site has a certificate
in the first place. Bruce Schneier and Carl Ellison
have described some problems and flaws related to
certificates [5].Also, just having the little padlock in
the corner which indicates a secure connection is easy
to overlook. The user must take care of always react
suspiciously if the padlock is missing. Unless users are
made sufficiently aware of the importance to look of
security measures on a site, the presence of security
measures may not be optimally effective.

4. SSH

4.1 Background

SSH stands for Secure Shell, and is both a program
and an internet protocol used to log into another
computer over a network, to execute commands in a
remote machine and to move files from one machine
to another via an encrypted link. It is widely used by
network administrators to control the Web and other
kinds of servers remotely. SSH is actually a suite of
three utilities, slogin, ssh, and scp that are secure
versions of the earlier UNIX utilities, rlogin, rsh, and
rcp. The big difference being that SSH provides
strong authentication and secure communications over
unsecured channels.

The information through SSH is encrypted and
secure in several ways. Both ends of the client/server
connection are authenticated using a digital certificate,
and passwords are protected by being encrypted.

The old UNIX utilities, rlogin, rsh and rcp have

been heavily used for a long time. These are the
traditional BSD (Berkeley Software Distribution)
programs. They have been the most used programs for
accessing and moving files between machines in the
UNIX environment. A big flaw regarding these
utilities is their vulnerability to different kinds of
attacks. Somebody who has root access to machines on
the network, or physical access to the wire, can gain
unauthorized access to systems in a variety of ways. It

is also possible for such a person to log all the traffic
to and from your system, including passwords. SSH
never sends password in the clear.

Because of their weak communication security, SSH

was created. Tatu Ylönen from Finland created the fist
version in 1995 and later formed the SSH
Communications Security company to exploit this
innovation. This company subsequently relicensed
SSH to F-secure. The SSH protocol is now under
standardization by the IETF secsh [9] working group.

There are several implementations of the SSH

protocol available for most modern platforms,
including Microsoft Windows and Mac OS. There are
commercial versions, freeware versions and open
source versions. Several commercial variants exists,
among the most popular seems to be:

SSH clients:

• SSH Secure Shell client, SSH Communications

Security [10]
• F-secure SSH, F-Secure [11]
• SecureCRT and SecureFX, Van Dyke Software

[12]
• RemotelyAnywhere, RemotelyAnywhere [13]
• TinyTERM, Century Software [14]
• PowerTermPro, Ericom Software [15]

SSH servers:

• SSH Secure Server, SSH Communication
Security [10]

• F-secure SSH Server, F-Secure [11]
• VShell Server, Van Dyke Software [12]
• Pragma SecureShell Server, Pragma Systems

[16]
• WinSSHD, Bitvise [17]
• RemotelyAnywhere Server Edition,

RemotelyAnywhere [13]

All these versions offer different features and
solutions, but they try to implement the core of the
SSH protocol. Although some of them do not fully
comply with the standard. The software from SSH
Communication Security and F-secure are the only
ones certified in the list above.

There are a number of open source variants to
choose from. These offer the same core services like

the commercial variants, although they are not as rich
in features. PuTTY is the only one in this list that has
a version for Microsoft Windows.

SSH clients:

• OpenSSH client [18]
• lsh client, The GNU project [19]
• ossh client [20]
• MacSSH [22]
• Putty [22]
• sshtools [23}

SSH servers:

• OpenSSH daemon
• lsh daemon, The GNU project
• ossh daemon
• Dropbear SSH server [24]

OpenSSH is an open source implementation of

SSH. OpenSSH derives from the original, free
implementation of SSH. This implementation is the
one most used in the UNIX and Linux environments.

Something to have in mind is that there exits legal
issues involved with cryptos, restricted by
cryptography laws. It is illegal in countries where
encryption is outlawed. Fortunately Sweden is not
affected. Crypto Law Survey [25] it's a survey of
cryptography laws in many countries but I can't vouch
for its correctness.

4.2 Features and functionality

There are two versions of SSH available: SSH1 and
SSH2. SSH1 is the first and original version.SSH2 is
the new protocol version, it is rewritten with improved
cryptography and is designed for more general
purpose VPN: s (Virtual Private Network). The
differences between the SSH1 and SSH2 versions are
that they are two entirely different protocols. SSH1
and SSH2 encrypt at different parts of the packets, and
SSH1 uses server and host keys to authenticate
systems where SSH2 only uses host keys. SSH2 is a
complete rewrite of the protocol and does not use the
same network implementation that SSH1 does. SSH2
was designed with more security in mind. In addition,
it offers more improvements in performance and
portability. Because of the different protocol
implementation, they are not compatible. The SSH1
protocol is not being developed anymore, SSH2 is the

new standard. Although, the first version is brought
up and explained because of its broad use even today.
The recommendation is to use the second version for
enhanced security.

The SSH2 version includes:

1. sftp (secure ftp) and SSH2 tunneled ftp.
2. Uses separate configuration files for the SSH1

and SSH2 protocols.
3. Compatible with SSH1, when SSH1 has been

installed prior to SSH2.
4. Supports DSA and Diffie-Hellman key

exchange.

Secure Shell uses the following ciphers for encryption:

Cipher SSH1 SSH2

DES Yes No

3DES Yes Yes

IDEA Yes No

Blowfish Yes Yes

Twofish No Yes

Arcfour No Yes

Cast128-cbc No Yes

There are different modes of authentication available:

1. Password (the /etc/passwd or /etc/shadow in
UNIX). This authenticates the user by
comparing the credentials submitted with the
password file to find a match.

2. User public key (RSA or DSA, depending on
the release). A mathematical key that can be
made publicly available and which is used to
verify signatures created with its corresponding
private key. Depending on the algorithm,
public keys are also used to encrypt messages
or files which can then be decrypted with the
corresponding private key

3. Kerberos (for SSH1). An authentication system
developed at the Massachusetts Institute of
Technology (MIT). Kerberos is designed to
enable two parties to exchange private
information across an otherwise open network.
It works by assigning a unique key, called a
ticket, to each user that logs on to the network.

The ticket is then embedded in messages to
identify the sender of the message.

4. Hostbased (.rhosts or /etc/hots.equiv in SSH1 or
public key in SSH2). This method only allows
the host, computers, that are listed in this these
files to be accepted.

The main use of SSH is to protect information that

travels inside a network or through different networks
that could be exposed to the entire world, like the
Internet. SSH gives protection against this known
attacks or weaknesses:

• IP spoofing, where a remote host sends out
packets which pretend to come from another
trusted host. SSH protects against a spoofer on
the local network, who can pretend to be the
local router to the outside.

• IP source routing, where a host can pretend that
an IP packet comes from another trusted host.

• DNS spoofing, where an attacker forges name
server records.

• Interception of clear text passwords and other
data sent by intermediate hosts.

• Manipulation of data by people in control of
intermediate hosts

• Attacks based on listening to X authentication
data and spoofed connection to the X11 server.

Among the features provided by the popular

OpenSSH implementation is the ability to forward
X11 connections and arbitrary TCP ports over the
secure channel. Making a secure access to applications
on a remote X11 server, or other applicatins in general
that can be accessed through the TCP protocol.

4.3 Installation and Configuration

For the Windows environment the recommended
application is PuTTY, it is free and has a small
footprint.

The installation is very straight forward, get the
program from this location [22] and store it on the
desired location on your computer. No installation or
special configuration is necessary, just run the
application when needed. It is very user friendly. See
next section for explanation and picture of the
program.

Just to mention something about the server

application. If you are installing the server � daemon �
check to make sure that the remote clients are
connecting to you with the right version of SSH. An
SS1 daemon will only work with SSH1 clients, while
an SSH2 daemon with built SSH1 capability, will
support both versions. For more information about this
se the SSH-FAQ [26].

OpenSSH is the preferred SSH implementation in

the UNIX and Linux environment. To install it, grab
the sources from http://www.openssh.org. Then, it�s
only a matter of entering these commands, the last as
user root:

./configure
make
make install

These are all necessary steps to install it on the
computer, after this, the client is available for usage as
explained above. For more information, see the man
page.

4.4 Usability

All of these implementations are command line
based. That is they are invoked and used in a shell
(terminal). The CLI (Command Line Interface) is the
normal way to access and use programs in the UNIX
environment. They give a lot of flexibility to the power
user but can be cumbersome to master.

There is a GUI (Graphical User Interface) front end
to use on top of this applications called SecPanel [27]
that gives a nicer look and a less intimidated feeling.
This package is easy to install and configure but will
not be brought up in this document. PuTTY is the only
exception of all SSH implementations mentioned that
is a GUI application. The downside is that it that the
GUI version is only available on Windows.

In a Windows environment, the PuTTY appication

is very simple and easy to use through its GUI. Start
the application enter the server you want to access
and choose port number 22, the SSH port, for the
connection and click the open button. Is that simple to
establish a connection. See figure below for a
illustration. After this a new terminal window will
appear which will ask for your account and password.
If validated, your are granted access. If this is the first
time you connect to the specified server, the applicatin

will not recognize it and ask for your approval. You
will continue by simply answering yes or no,
depending of your trust to the server.

As you can see in figure 2, there are a great number

of options available, as you get more acquainted with
the application the new options will be easily
mastered. The application offer possibility to
remember settings for a specific server, appearance,
connection settings and preferred algorithm for the
session.

As mentioned earlier, in the UNIX and Linux

world, OpenSSH is the preferred implementation of
the SSH protocol. It is a command line application. To
connect to a remote host the normal procedure is as
follows:

$ ssh username@remotehost

The $ sign represent the terminal prompt, ssh

invokes the program, username is the name of the
account on the remote host, and remotehost the host
you want to connect to. This is simple to learn and
remember, though there are security aspects related to
its use that can complicate things. The first time you
connect to a new host you need to verify its
authenticity by checking the key fingerprint it
presents. This verification is obviously difficult to
establish for a novice or normal user. The
configuration is done by changing parameters in a text

configuration file using a normal editor. This
approach is known to be obscure and error prone for
new users. The proper configuration can be a daunting
task. For more detailed descriptions of its usage and
possible configuration, use the command man ssh to
get further information.

4.5 Vulnerabilities

1. SSH1 insertion attack:

SSH1 uses a 32-bit cyclic redundancy check (CRC-
32) algorithm to verify that a packet contains only
legitimate data. If certain cipher modes are used, a
remote attacker could create an ssh packet that could
decrypt to arbitrary plaintext. Another weakness in the
CRC-32 algorithm could allow the attacker to forge a
valid checksum so that the packet will seem to be
legitimate. By inserting such packets into an existing
session, the attacker could execute arbitrary
commands on the system.

2. Man in the middle attack:

This attack affects the SSH1 protocol. In an SSH
session, the server hands the client a public key, then
proceeds to prove that it has access to the
corresponding private key. For this transaction to be
valid, the client must independently verify that this
particular public key identifies the host the client
originally intended to contact. The problem is that
client may be configured to automatically accept and
record host public keys on first contact. The user
should verify somehow that the key actually belongs to
the host it claims to be. The problem behind this lies
in the host-key verification step. It is not a required
step in the protocol. By spoofing DNS replies from a
client and redirect the SSH connection to an
intermediate system, it is possible to intercept all
traffic.

3. Connection redirection attack:

When making a connection to localhost, SSH
disables host key checking to provide compatibility
with NFS filesystems. If the machine uses a poisoned
DNS server to resolve localhost, it is possible to
redirect the SSH session to a different host. Users are
normally asked to confirm the acceptance of a host key
the first time it is presented. If the user accepts it, he
or she is asserting that the key represents the host they
intended to connect to. But, if an attacker exploits this

vulnerability, the user will not be asked for this
confirmation because host key checking has been
disabled. Not even the most alert user will be able to
detect the redirection.

4. Session key recovery:

The SSH1 protocol contains a flaw in the key
exchange protocol. By sniffing a connection between a
client and the server, it is possible to detect when the
connection starts and get the packet containing the
encrypted session key. Then, by working in parallel,
saving all successive packets exchanged between
server and client, and at the same time attempt a
session key decryption. Once the session key is
decrypted, the saved encrypted packets sent between
this client and the server can be decrypted in a
straight-forward manner.

5. ssh-agent vulnerability:

This vulnerability enables users to use RSA
credentials belonging to other users who use the ssh-
agent program [28]. The cause of this is because the
ssh-agent manages the RSA keys for the ssh program,
and is primarily used to help users avoid typing their
pass phrase every time they wish to use ssh, slogin or
scp. This is accomplished by the fact that when the ssh
client connects to a server using the AF_UNIX socket,
it is running as super-user, also known as root, and
performs insufficient permission checking. This
makes it possible for users to trick their clients into
using credentials belonging to other users.

Any user who utilize RSA authentication and use

the ssh-agent program can have their credentials
improperly used by a malicious user, who then can
access services or programs on a host machine.

4.6 Conclusions

SSH2 is the new standard established by the IETF
secsh workgroup. Though many people still use the
SSH1 version, there are arguments against running it:

• It is subject to man-in-the-middle attacks.

• There are structural weaknesses in SSH1 which
leaves it open to additional attacks.

• It has less supported platforms.

• It supports .rhosts. authentication, which it�s
against the draft for SSH2

At the same time if offers some advantages that the
second version does not meet:

• It has more diverse authentication support like,
AFS and Kerberos.

• It is supported by a great number of platforms,
this is changing has SSH2 is catching up.

• Less license issues than SSH2, this is a major
reason why it is still popular.

SSH is a good replacement for the old utilities used
to access remote host and move files between them.
The SSH2 version removes some flaws from the first
versions and adds some enhancements to make it even
more secure. It�s definitely a good improvement
compared to other alternatives. By using SSH the
secure communication is possible, but configuration
and the maintenance of patches is necessary to stay up
to date with vulnerabilities. Though the use of SSH in
the command interface can seem daunting for the first
timer, it is simple to use. A little introduction and
guidance to a complete novice should be enough to get
the user started with the basic usage. Although, the
proper configuration of the client and the server can
be a difficult task, depending of the functionality
needed. The PuTTY client for the Windows
environment is a good example of a great and easy to
use SSH client, unfortunately, it is currently not
available for the UNIX and Linux community.

5. Summary and final words

Both methods presented in this document give good
security for the interchange of information in open
networks. SSH is convenient for login and executing
commands to remote machines. It offers a great
number of features that facilitates operability between
hosts. SSL is preferred choice for accessing sensitive
information in Web and mail servers. The popularity
and simplicity of the protocol is making its way into
VPN products which will make it a preferred
alternative in the future for secure communication.

Analysis and improvements are continuously being
made to both protocols assuring their maturity. It is
imperative in this kind of applications to keep up with
the vulnerabilities and security advisories presented
for each protocol. The proper configuration and

maintenance of updates and patches are necessary to
guard against possible exploits and misuses of the
software. Secure communication is definitely possible
with these technologies.

The integration of SSL into mainstream browsers

and email clients are giving us the possibility of secure
communication transparent to their usage. Make sure
you are using the 3.0 version of the SSL protocol.
Although, the user needs some knowledge about the
identification of the certificate at the first stage of
communication, to avoid possible misuse.

SSH is definitely a good replacement for the older

tools that are still available. The recommended version
to use is SSH2. It provides a great set of features that
improves its functionality and use. SSH might not be
the easiest thing around, but a basic introduction
should get the user acquainted with it, especially with
the warning messages that could mean strange
behavior.

References

[1] VeriSign, http://www.versign.com, accessed April

2004

[2] Analysis of the SSL 3.0 protocol,

http://www.schneier.com/paper-ssl-revised.pdf,
accessed April 2004

[3] OpenSLL, http://www.openssl.org, accessed April

2004

[4] SSL Bomb,

http://news.netcraft.com/archives/2004/04/19/expl
oit_targets_windows_ssl_vulnerability.html,
accessed April 2004

[5] Ten Risks of PKI,

http://www.counterpane.com/pki-risks-ft.txt,
accessed April 2004

[6] Web Spoofing Revisited: SSL and beyond,

http://www.cs.dartmouth.edu/~pkilab/papers/tr417.
pdf, accessed April 2004

[7] Timing attack against RSA private keys,

http://lists.netsys.com/pipermail/full-
disclosure/2003-March/004142.html, accessed
April 2004.

[8] Apache-SSL Client Certificate Forging
Vulnerability,
http://www.securityfocus.com/bid/9590, accessed
April 2004

[9] ITEF SECSH,

http://www.ietf.org/html.charters/secsh-
charter.html, accessed April 2004

[10] SSH Communication Security,

http://www.ssh.com, accessed April 2004

[11] F-Secure, http://www.f-secure.com/, accessed

April 2004

[12] Van Dyke Software, http://www.vandyke.com,

accessed April 2004

[13] RemotelyAnywhere,

http://www.remotelyanywhere.com, accessed
April 2004

[14] TinyTERM, Century Software,

http://te.censoft.com/products/tinyterm.php?src=,
accessed April 2004

[15] PowerTermPro, Ericom Software,

http://www.ericom.com/default.asp, accessed
April 2004

[16] Pragma SecureShell Server, Pragma Systems,

http://www.pragmasys.com/SecureShell,
accessed April 2004

[17] Bitvise, http://www.bitvise.com/winsshd.html,

accessed April 2004

[18] OpenSSH, http://www.oopenssh.org, accessed

April 2004

[19] GNU, http://www.gnu.org, accessed April 2004

[20] ossh, ftp://ftp.pdc.kth.se/pub/krypto/ossh/,

accessed April 2004

[21] MacSSH, http://pro.wanadoo.fr/chombier/,

accessed April 2004

[22] PuTTY,

http://www.chiark.greenend.org.uk/~sgtatham/pu
tty/, accessed April 2004

[23] sshtools, http://www.sshtools.com, accessed April
2004

[24] Dropbear SSH Server,

http://freshmeat.net/dropbear/, accessed April
2004

[25] Crypto Law Survey,

http://rechten.uvt.nl/koops/cryptolaw/, accessed
April 2004

[26] SSH-FAQ, http://www.dreamwvr.com/ssh2-
faq/ssh-faq-1.html, accessed April 2004

[27] SecPanel, http://www.pingx.net/secpanel,

accessed April 2004

[28] SSH Agent Vulnerability, http://www-

arc.com/sara/cve/SSH_vulnerabilities.html,
accessed April 2004

