Security and security controls in operating systems

A quantitative approach 2023-02-27

Robert Malmgren rom@romab.com

- Consultant in IT and infosec since 20+ years
- Working alot on with critical infrastrucutre protection, process control, SCADA security etc, but also in financial sector, government, etc
- Work covers everything from writing policies, requirement specs and steering documents to development, penetration testing, incident handling and forensics

minute presentation

Outline of talk

Intro

- Background and basics
- Security problems & vulnerabilities
- Example of operating systems and security
- Trends

Some short notes

- COTS products
 - Embedded systems, code for micro controllers, etc often lack most fundamental security features
 - Q

• The focus is on general operating system used in general computers -

Some experimenal OS's and domain specific solutions have better-thanaverage security concepts and security controls, e.g. military grade usage

Background and basics Part I: protection, security controls

Intro - foundation

- Modern software is normally formed into components, parts and layers in systems
- Layers and isolation is a way to provide separation, which can be:
 - Logical/Virtual: A way to make it appear that execution environment have exclusive access
 - Physical: Different computers, different CPUs/cores, different disks
 - Time based: Separation of execution time/Timeshare
 - Based on security technologies, i.e. cryptographic

'C85

Intro - foundation

- Complex systems
 - ... run multiple programs at once,
 - ...have multiple users,
 - ... store huge amounts of data,
 - ... is interconnected via networks

Intro - foundation

- operating system
 - To identify and authorize users of the system

 - To prevent unauthorised access to OS resources

• This there is to built-in security into the foundation of the systems - the

• To allow for an environment where necessary basic controls are in place

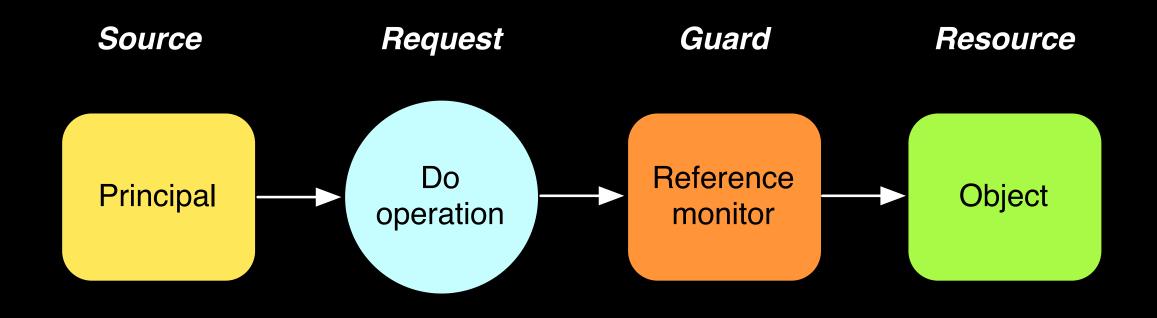
Some concepts and principles **TCB** - Trusted Computing Base **RBAC - Role Based Access Control**

MAC - Mandatory Access Control Principle of least privilege

Principle of least surprise

DAC - Discretionary Access Control

Capabilities and requirements


Need	Description	Example
Protect a system resource	Prohibit malicious or unintentional access to	System tables, direct access to I/O-units,
Authorization checks for usage of system calls and system resources	Provide controlled access to system, so that system mainain system integrity and provide continuous security to application and information	memory protection reference monitor
Separation of resources	Physical, Logical, temporal or cryptographical separation	separation in running time

Some important concept

Reference monitor

Trusted Computing Base, TCB All things in the trusted part of the OS necessary to enforce the <u>security policy</u>

[1] Lampson et al: Authentication in Distributed Systems: Theory and Practice

Principles for secure design*

Economy of mechanism	Keep th
Fail-safe defaults	Base access of
Complete mediation	Every access
Open design	
Separation of privilege	technique in wh the specific pri
Least privilege	Every program the least s
Least common mechanism	Minimize th than o
Psychological acceptability	It is essentianed ease of use apply for the second

JEROME H. SALTZER et al The Protection of Information in Computer Systems http://www.cs.virginia.edu/~evans/cs551/saltzer/

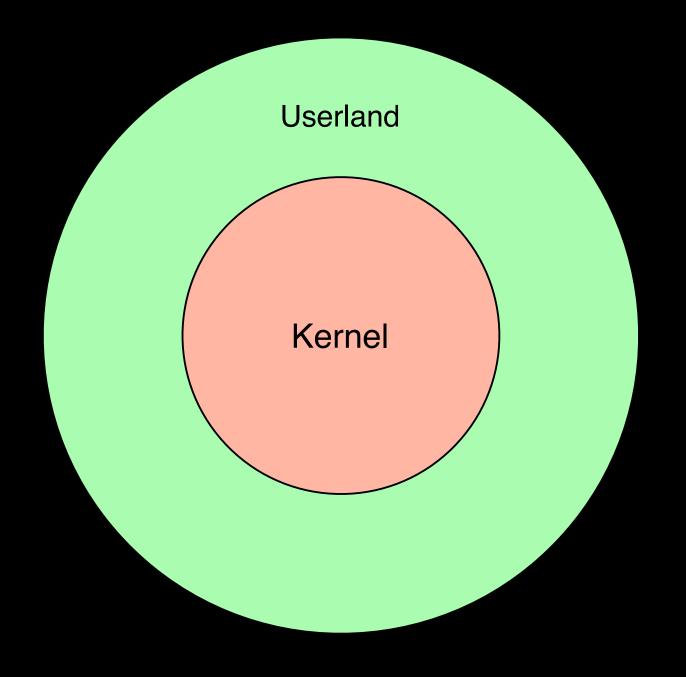
e design as simple and small as possible

decisions on permission rather than exclusion

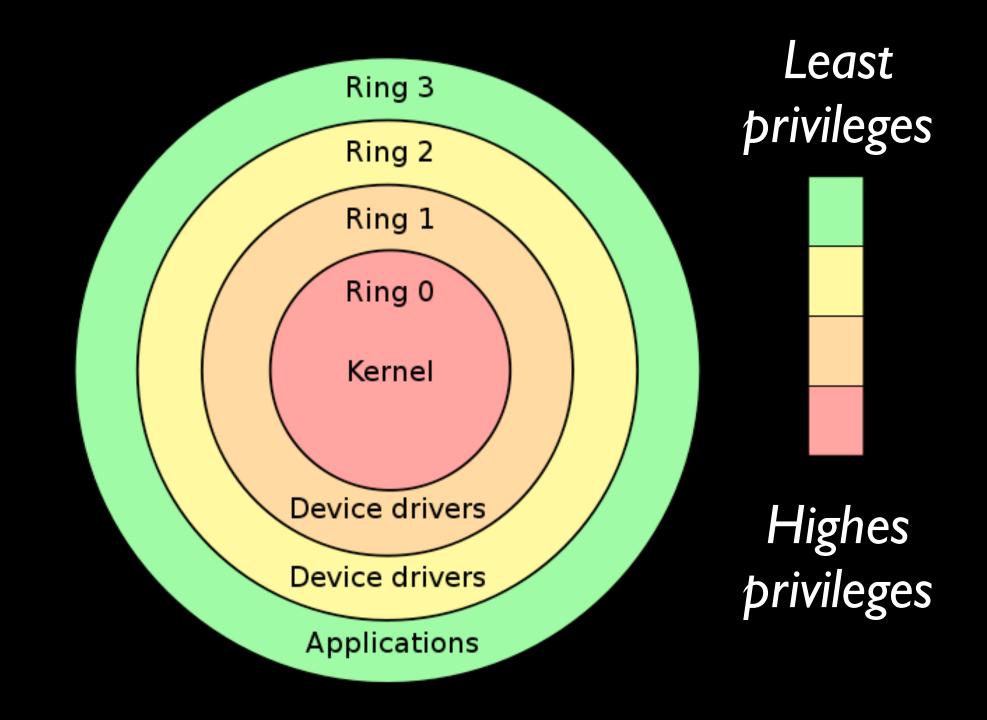
to every object must be checked for authority

The design should **not** be secret

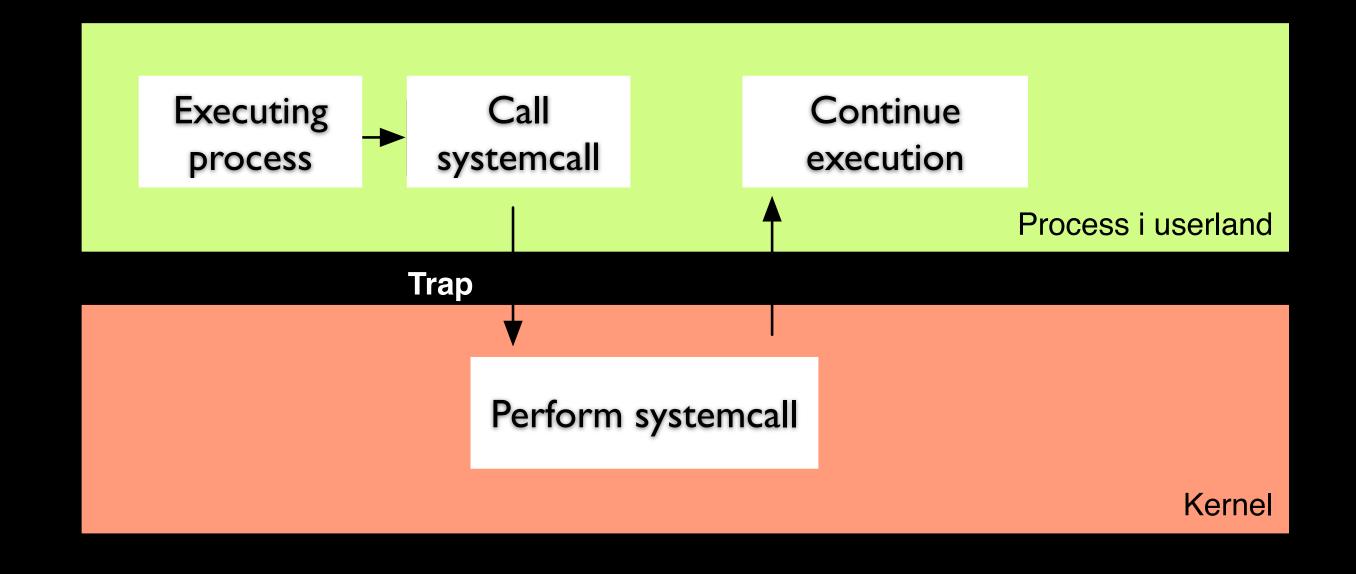
hich a program is divided into parts which are limited to vivileges they require in order to perform a specific task


and every user of the system should operate using set of privileges necessary to complete the job

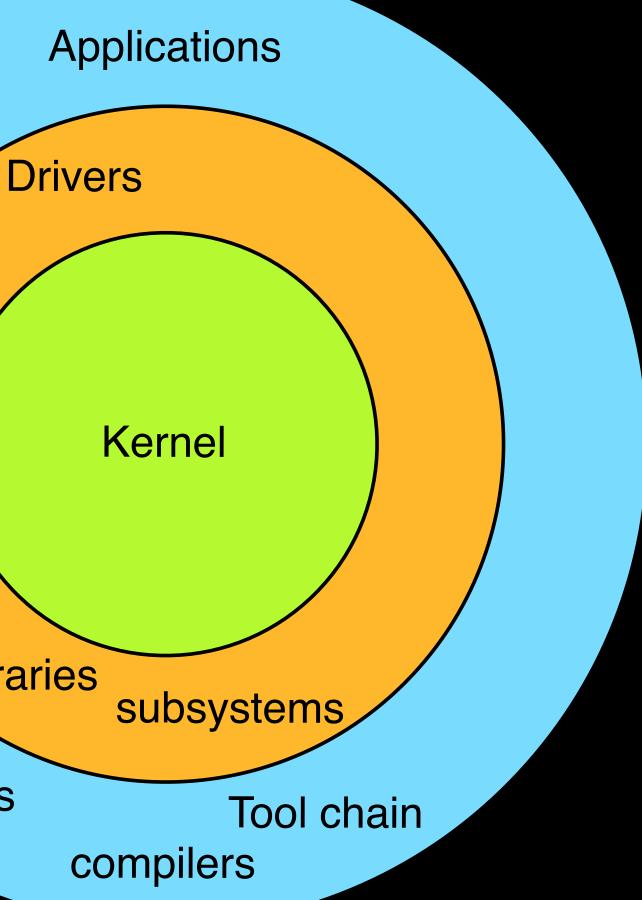
e amount of mechanism common to more one user and depended on by all users

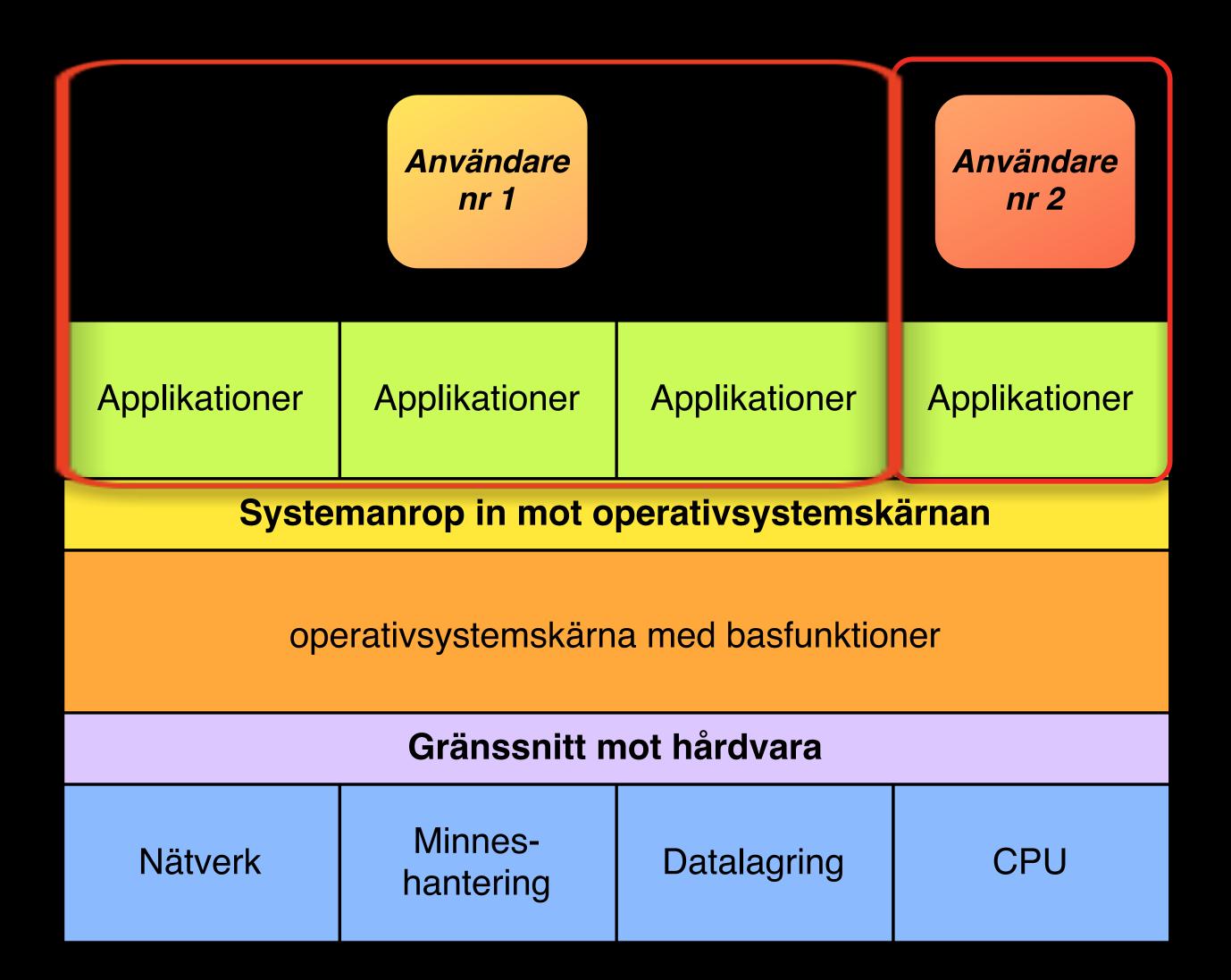

al that the human interface be designed for e, so that users routinely and automatically the protection mechanisms correctly

The classical ring model


UNIX

x86


Interaction between application and OS


Overview of operating system (1/2)

libraries

Servers

Overview of operating system (2/2)

Problem with these pictures and concepts

Layering violation

and hence bypass controls

- In some scenarios attackers might come an unexpected way
 - a virtual machine environment

some software might skip a layer and call an underlaying layer directly

Attacking from host operating system against guest operating systems in

The classical ring model, updated

Other rings

-1	Hypervisor	Allow guest OS
-2	System Management Mode	APM/ACPI/TPM
-3	Intel Management Engine / AMD Platform Security Processor	Special software the Platform Cont (PCH) proce

Källa: <u>http://en.wikipedia.org/wiki/File:Priv_rings.svg</u>

Källa: https://medium.com/swlh/negative-rings-in-intel-architecture-the-security-threats-youve-probably-never-heard-of-d725a4b6f831

"ring 0"

-support

running in itroller Hub essor

Device Drivers

User Applications

Device Drivers

Kernel

Hypervisor

SMM

ME

Ring -3

Ring -2

Ring -1

Ring 0

Ring 1

Ring 2

Ring 3

Problem with these concepts

You have a "hidden" processor on your computer Its functionality has never been publicly documented It appears to have been customized for certain TLA government agencies It has unlimited access to the main processor It has unlimited access to all memory It has unlimited access to all peripherals It has its own MAC and IP addresses It runs a web server It is always running You can't turn it off You can't disable it It has had multiple known exploitable vulnerabilities It is the single most privileged known element of an Intel Architecture processor chipset

Memory handling

- D e.g. MMU
 - OS support is required to use the hardware supported memory protection
 - to isolation, non-executable memory areas, etc

• RAM memory is a central resource that in a controlled way must be shared and handled between operating system, applications and other components

Modern computer systems have hardware support for memory protection,

Modern hardware support can enforce several security features related

File system

- and protection
- Besides the actual file content, there is meta data that is of importance
 - etc
- misleading and hide the fact that a file has been altered

• A file system is often a central component in a computer system w.r.t. security

• File owner, dates of creation/change/access, access information, security labels,

Manipulation of meta data can in some cases be more serious security breach than the manipulation of the file content itself. Or a combo of both can be

File system	Description	Comment
FAT	No access control	Classic MS-DOS
NTFS	Discretional Access Control via ACL	Advanced possibilities to make controls
UFS	Discretional Access Control, writing & program execution for owner, group, "others"	Simple access controls

Local filsystem

Network file systems

File system	Description	Comment
NFSv3	Hostbaserad accesskontroll, uid	Trivial to circumvent
NFSv4	Secure RPC, KRB5a, KRB5p, KRB5i	Require a Kerberos server, KDC a= authentication i=integrity = calculate MAC p= privacy = encrypt packet
SMB/CIFS	KRB5a	

Comparing security in Operating systems (1/5)

• When in time was the system developed? • What was the state-of-the-art at that time? • What trends where currently in fashion?

Comparing security in Operating systems (2/5)

- Development methodologies
 - Open Source or Closed Source?

 - the design, that is a correct interpretation of the analysis?

"Given enough eyeballs, all bugs are shallow" - Linus' Law

• What support do one use to ensure that security is built into the product?

• How does one ensure that implementation is a correct representation of

Comparing security in


2015

Windows 10

40-60

- But really, what good is this comparison?
- Write more code = get higher salary? Manage a 200K-SLOC project is cooler than a 5K-SLOC?
 - More code = more bugs?
- More code = more security checks and advanced concepts like crypto, resillient failure checking built into everything?
- But certainly, complexity is considered **bad** and **evil** in the context of security. And there is often a relation between complexity and size of program

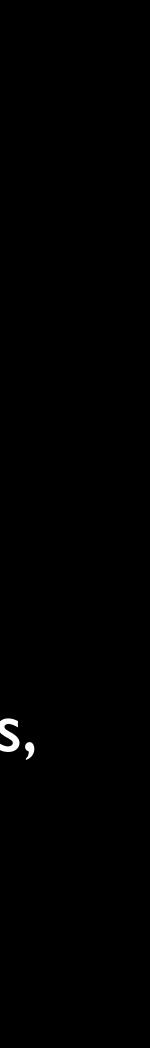
2	020	Linux kernel 5.12	28.8

Comparing security in Operating systems (5/5)

- subsystems or application
 - Criteria (CC, ISO/IEC 15408), etc

More a theoretical excersice than of any real value?

What can one gain by having formal certification of operating systems,


Trusted Computer System Evaluation Criteria (TCSEC), Common

Background and basics Part 2: bugs and vulnerabilities

Intro - just the basic facts

- All software is prone to bugs
- destruction of data, privilege escalations

• Some bugs will have an impact that can have security implications - data leaks,

Intro - just the basic facts

- Some bugs help to circumvent security mechanisms
- Some security designs are flawed, or build on flawed assumptions

Operating system security

- Security problems in the operating system can affect the integrity of the system itself
 - Someone else can control the system to their own liking pwnd!
 - Bugs in OS kernel can affect system integrity
- Security problems with the operating system can in turn affect the security in *applications* and *subsystems* (databases, middle ware, etc)

Some concepts and terms Vulnerability

Oday exploit

Stack smashing Stack overflow

Heap overflow

Exploit

Foreverday exploit

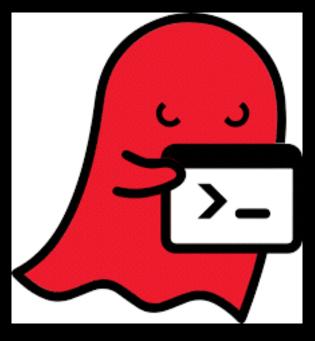
CVE-2021-1234

Race conditions

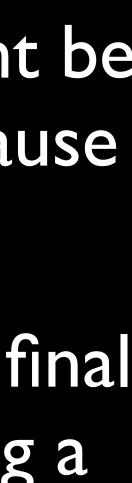
- Some bugs are undiscovered for some time, they lay latent
- Once discovered, they can be abused, if it is an security vulnerability, that can be exploited
- A discovered security bug, is sometime called a Oday, until it is mitigated

ntro - the basics

- Nowdays bugs and vulnerabilities tend to get names (heartbleed, ghost, shellshock, etc) and logos
- also some bugs/vulnerabilities gets "formal name", i.e. CVE*, and a scoring CVSS**


e.g. CVE-2011-372

Intro - the basics



Some concepts and principles

- is not identified and fixed.
- binary.

 Attack vector - Different paths to reach an vulnerability. One path might be closed by a vendor patch, but another might still be there, if the root cause

 Reverse engineering - To re-create the original design by observing the final result, in computer science - to re-create some source code by examing a

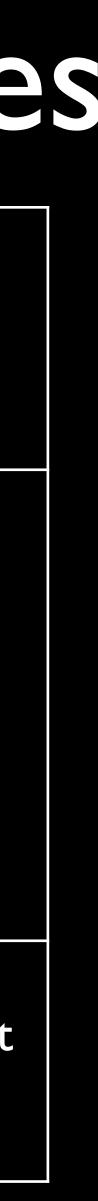
CVE Details The ultimate security vulnerability datasource

Log In <u>Register</u>

<u>Switch to https://</u> Home	То	p 50 Products By Tota	l Number O	f "Distinct	" Vulnerabilities
Browse :	Go t	o year: <u>1999 2000 2001 2002</u>	2003 2004 200	05 2006 2007	2008 2009 2010 2011 2012
<u>Vendors</u>		Product Name			Number of Vulnerabilities
Products	1	Debian Linux	Debian	OS	<u>5816</u>
Vulnerabilities By Date					
Vulnerabilities By Type	2	Android	<u>Google</u>	OS	<u>4069</u>
Reports :	3	<u>Ubuntu Linux</u>	<u>Canonical</u>	OS	3115
CVSS Score Report	4	Mac Os X	<u>Apple</u>	05	<u>2964</u>
CVSS Score Distribution	5	Linux Kernel	Linux	OS	2748
Search :		Fedora	Fedoraproject	os	2728
Vendor Search					
Product Search	7	Windows 10	Microsoft	os	<u>2590</u>
Version Search	8	Iphone Os	Apple	OS	<u>2573</u>
Vulnerability Search By Microsoft References	9	Windows Server 2016	Microsoft	05	<u>2334</u>
Top 50 :	10	Chrome	Google	Application	<u>2329</u>
Vendors	11	Windows Server 2008	Microsoft	os	<u>2154</u>
Vendor Cvss Scores		Windows 7	Microsoft	OS	2019
Products	12	Williams /	Pilerosore	05	2019
Troducta	4.0	F 1 C	N	A 12 42	1000
Product Cvss Scores	13	<u>Firefox</u>	<u>Mozilla</u>	Application	<u>1993</u>
		Firefox Windows Server 2012	<u>Mozilla</u> <u>Microsoft</u>	Application OS	<u>1993</u> <u>1954</u>
Product Cvss Scores					
Product Cvss Scores Versions	14	Windows Server 2012	<u>Microsoft</u> <u>Microsoft</u>	OS	<u>1954</u> <u>1841</u>
Product Cvss Scores Versions Other : <u>Microsoft Bulletins</u> <u>Bugtrag Entries</u>	14 15 16	Windows Server 2012 Windows 8.1 Windows Server 2019	Microsoft Microsoft Microsoft	os os os	<u>1954</u> <u>1841</u> <u>1792</u>
Product Cvss Scores Versions Other : Microsoft Bulletins Bugtrag Entries CWE Definitions	14 15 16 17	Windows Server 2012 Windows 8.1 Windows Server 2019 Windows Rt 8.1	Microsoft Microsoft Microsoft Microsoft	0S 0S 0S 0S	<u>1954</u> <u>1841</u> <u>1792</u> <u>1682</u>
Product Cvss Scores Versions Other : Microsoft Bulletins Bugtrag Entries CWE Definitions About & Contact	14 15 16	Windows Server 2012 Windows 8.1 Windows Server 2019	Microsoft Microsoft Microsoft	os os os	<u>1954</u> <u>1841</u> <u>1792</u>
Product Cvss Scores Versions Other : Microsoft Bulletins Bugtrag Entries CWE Definitions About & Contact Feedback	14 15 16 17	Windows Server 2012 Windows 8.1 Windows Server 2019 Windows Rt 8.1	Microsoft Microsoft Microsoft Microsoft	0S 0S 0S 0S	<u>1954</u> <u>1841</u> <u>1792</u> <u>1682</u>
Product Cvss Scores Versions Other : Microsoft Bulletins Bugtraq Entries CWE Definitions About & Contact Feedback CVE Help	14 15 16 17 18	Windows Server 2012 Windows 8.1 Windows Server 2019 Windows Rt 8.1 Enterprise Linux Desktop	Microsoft Microsoft Microsoft Microsoft Redhat	0S 0S 0S 0S 0S	<u>1954</u> <u>1841</u> <u>1792</u> <u>1682</u> <u>1469</u>
Product Cvss Scores Versions Other : Microsoft Bulletins Bugtrag Entries CWE Definitions About & Contact Feedback CVE Help FAQ	14 15 16 17 18 19	Windows Server 2012 Windows 8.1 Windows Server 2019 Windows Rt 8.1 Enterprise Linux Desktop Enterprise Linux Server	Microsoft Microsoft Microsoft Microsoft Redhat Redhat	0S 0S 0S 0S 0S 0S	1954 1841 1792 1682 1469 1419
Product Cvss Scores Versions Other : Microsoft Bulletins Bugtraq Entries CWE Definitions About & Contact Feedback CVE Help	14 15 16 17 18 19 20 21	Windows Server 2012 Windows 8.1 Windows Server 2019 Windows Rt 8.1 Enterprise Linux Desktop Enterprise Linux Server Enterprise Linux Workstation Opensuse	Microsoft Microsoft Microsoft Microsoft Redhat Redhat Redhat	0S 0S 0S 0S 0S 0S 0S	1954 1841 1792 1682 1469 1419 1380
Product Cvss Scores Versions Other : Microsoft Bulletins Bugtraq_Entries CWE Definitions About & Contact Feedback CVE Help FAQ Articles	14 15 16 17 18 19 20 21 22	Windows Server 2012 Windows 8.1 Windows Server 2019 Windows Rt 8.1 Enterprise Linux Desktop Enterprise Linux Server Enterprise Linux Workstation Opensuse Leap	Microsoft Microsoft Microsoft Microsoft Redhat Redhat Redhat Opensuse Opensuse	OS OS OS OS OS OS OS OS OS	1954 1841 1792 1682 1469 1419 1380 1314
Product Cvss Scores Versions Other : Microsoft Bulletins Bugtrag Entries CWE Definitions About & Contact Feedback CVE Help FAQ Articles External Links :	14 15 16 17 18 19 20 21 22 23	Windows Server 2012 Windows 8.1 Windows Server 2019 Windows Rt 8.1 Enterprise Linux Desktop Enterprise Linux Server Enterprise Linux Workstation Opensuse Leap Tvos	Microsoft Microsoft Microsoft Microsoft Microsoft Redhat Redhat Redhat Opensuse Opensuse Apple	OS OS OS OS OS OS OS OS OS	1954 1841 1792 1682 1682 1469 1419 1380 1314 1295
Product Cvss Scores Versions Other : Microsoft Bulletins Bugtraq Entries CWE Definitions About & Contact Feedback CVE Help FAQ Articles External Links : NVD Website	14 15 16 17 18 19 20 21 22 23 24	Windows Server 2012 Windows 8.1 Windows Server 2019 Windows Rt 8.1 Enterprise Linux Desktop Enterprise Linux Server Enterprise Linux Workstation Opensuse Leap Tvos	Microsoft Microsoft Microsoft Microsoft Microsoft Redhat Redhat Opensuse Opensuse Apple Microsoft	OS OS OS OS OS OS OS OS OS OS OS OS Application	1954 1841 1792 1682 1682 1469 1419 1380 1314 1295 1171
Product Cvss Scores Versions Other : Microsoft Bulletins Bugtraq Entries CWE Definitions About & Contact Feedback CVE Help FAQ Articles External Links : NVD Website CWE Web Site	14 15 16 17 18 19 20 21 22 23	Windows Server 2012 Windows 8.1 Windows Server 2019 Windows Rt 8.1 Enterprise Linux Desktop Enterprise Linux Server Enterprise Linux Workstation Opensuse Leap Tvos	Microsoft Microsoft Microsoft Microsoft Microsoft Redhat Redhat Redhat Opensuse Opensuse Apple	OS OS OS OS OS OS OS OS OS OS OS Application	1954 1841 1792 1682 1682 1469 1419 1380 1314 1295
Product Cvss Scores Versions Other : Microsoft Bulletins Bugtrag Entries CWE Definitions About & Contact Feedback CVE Help FAQ Articles External Links : NVD Website CWE Web Site	14 15 16 17 18 19 20 21 22 23 24 25	Windows Server 2012 Windows 8.1 Windows Server 2019 Windows Rt 8.1 Enterprise Linux Desktop Enterprise Linux Server Enterprise Linux Workstation Opensuse Leap Tvos	Microsoft Microsoft Microsoft Microsoft Microsoft Redhat Redhat Opensuse Opensuse Apple Microsoft	OS OS OS OS OS OS OS OS OS OS OS OS Application	1954 1841 1792 1682 1682 1469 1419 1380 1314 1295 1171

12 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 /

Examples of different protection solutions

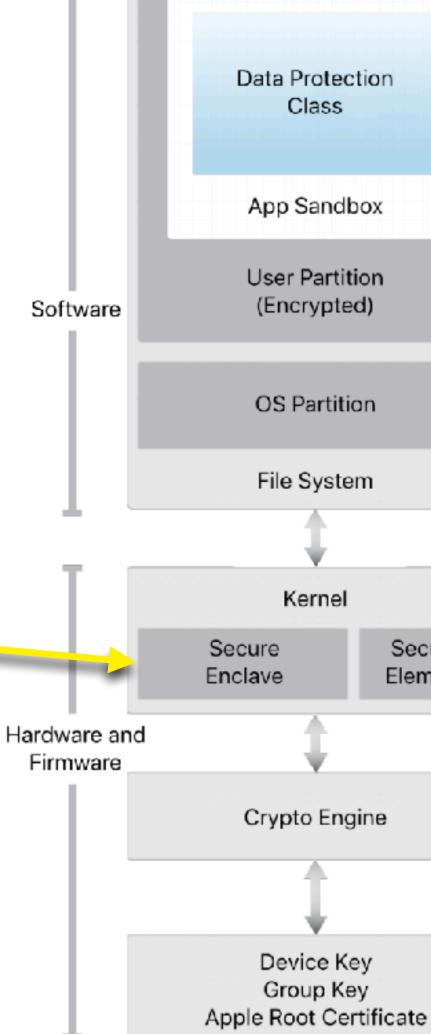

Security controls	Description	Example	Where?
Encryption	Protection against eavesdropping or unauthorized access	network traffic, file content, disk partitions, memory pages, swap files/ page area	OpenSSL, IPSec, SSH, OS ke
Electronic signatures	Protection against changes or unauthorized modifications by third parties,	network traffic, file content, disk partitions	OpenSSL, IPSec, SSH, OS kei
Cryptograph -ically strong hash values		Saved passwords, file content,	Password file, user data checksums on files

Security controls	Description	Example	Where?
Random numbers	Make a resource non- deterministic	File names, proccess ID,'s port numbers, sesssion keys, session id's, transaction numbers, DNS query ID's, execution time & timing	getrandom() /dev/urandom
Constant numbers	Make a resource non- deterministic	execution time, timing of events	Crypto code to prevent side channel attacks

Security controls	Description	Example
Compiler generated airbag - canary	Make sure buffer overflows dont get undetected	ProPolice,VisualStudio /GS
ASLR	Randomize addresses used by applications. Make sure its hard to write code that knows of addresses. Where did that lib go?	Android >4.0, iOS > 4.3, Windows >Vista, OpenBSD/NetNSD, Linux >2.6.12, MacOSX >10.5, Solaris >11.1, etc
KASLR	Randomize addresses used by kernel	Windows Vista, NetBSD, Linux >3.14, MacOSX 10.8, Android 11, etc

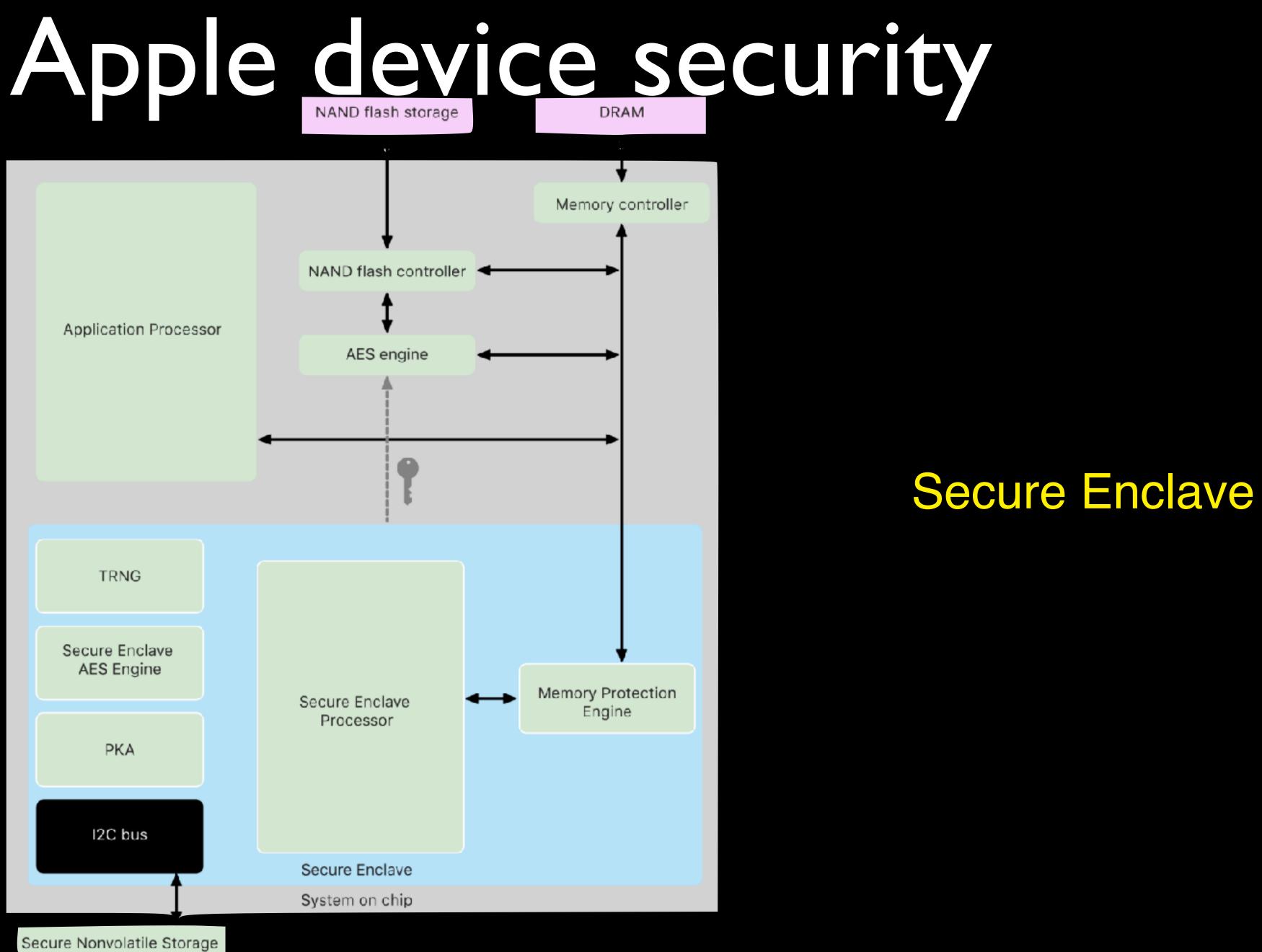
Security controls	Description	Example
DEP, NX, W^X	Make sure memory is not executable	IE on Windows Vista, Android >2.3, FreeBSD > 5.3, OpenBSD, Linux >2 MacOSX >10.5, etc
MTE	Memory Tagging Extension	Using ARM architecture feature to better prote against memory safety violations

Security controls	Description	Example
Secure boot chain / Verified boot	Make system startup sequence is secure	Make sure that each step of boot is cryptographically signed to ensure code integers. BIOS vs UEFI
Secure pairing	Make sure to connect to peripherals and resources in a secure way	Using bluetooth to connect to headset,



Security controls	Description	Example	
Scrubing, zeroing	Make sure that old data areas are cleaned before usage or returned to system	memory, file systems,VM system	
Logs, audit trails	Traces, error messages and dumps from systems and applications	Windows Eventlog, Syslog, audit, BSM	

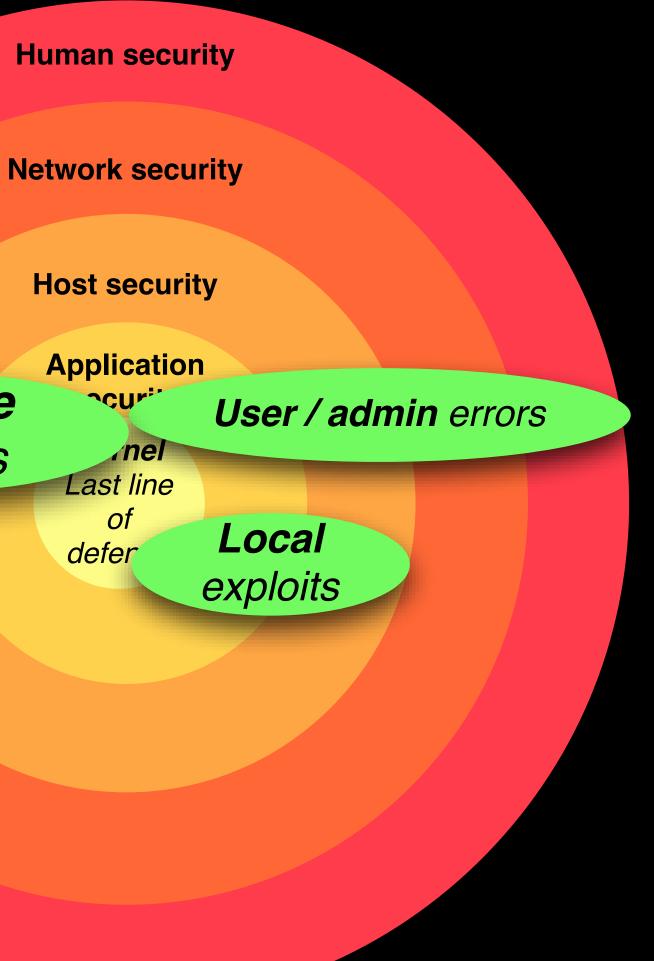
Apple iOS device security


Secure Enclave -

-App Sandbox

Secure Element

Secure Element Crypto Engine


Examples of vulnerabilities and attacks

Where do attacks occur?

Soc ial engi nee ring atta cks

Remote exploits

Most common attacks?

- A01:2021-Broken Access Control
- A02:2021-Cryptographic Failures
- A03:2021-Injection
- A04:2021-Insecure Design
- A05:2021-Security Misconfiguration
- A06:2021-Vulnerable and Outdated Components
- A07:2021-Identification and Authentication Failures
- A08:2021-Software and Data Integrity Failures
- A09:2021-Security Logging and Monitoring Failures*
- A10:2021-Server-Side Request Forgery (SSRF)*
- * From the Survey

2021

OWASP top- 0 list

Most common attacks?

2017	
A01:2017-Injection	_
A02:2017-Broken Authentication	
A03:2017-Sensitive Data Exposure	-
A04:2017-XML External Entities (XXE)	
A05:2017-Broken Access Control	
A06:2017-Security Misconfiguration	-
A07:2017-Cross-Site Scripting (XSS)	
A08:2017-Insecure Deserialization	
A09:2017-Using Components with Known Vulnerabilities	-
A10:2017-Insufficient Logging & Monitoring	-

* From the Survey

OWASP top- 0 list

General examples of threats and attacks SYN flood fork bombs Sensitive plaintext in RAM Wrong file permissions malformed network packets Confidentiality **Availability** Crashdumps with credentials or crypto keys unintentional filling of disk space Bypassed security checks intentional filling of disk space Manipulated system configuration

System integrity

Manipulated application Manipulated system binaries program binaries

Manipulated user files

Data integrity

Zapped system logs

Manupulated database content

10 techniques	Resource Development 7 techniques	9 techniques	12 techniques	Persistence 19 techniques	13 techniques	40 techniques
Active Scanning (?)	II Acquire Infrastructure (6)	Drive-by Compromise	Command and Scripting Interpreter (8)	II Account Manipulation (4)	H Abuse Elevation Control Mechanism (4)	II Abuse Elevation Control Mechanism (4)
II Gather Victim Host Information (4)	II Compromise Accounts (7)	Exploit Public-Facing Application	Container Administration Command	BITS Jobs	II Access Token Manipulation (5)	u Access Token Manipulation (5)
$\scriptstyle \rm II$ Gather Victim Identity Information $_{\rm (3)}$	II Compromise Infrastructure (6)	External Remote Services	Deploy Container	Boot or Logon Autostart Execution (15)	Boot or Logon Autostart	BITS Jobs
Gather Victim Network Information (6)	n Develop Capabilities (4)	Hardware Additions	Exploitation for Client Execution	Boot or Logon Initialization	Execution (15)	Build Image on Host
Gather Victim Org Information (4)	II Establish Accounts (2)	n Phishing (3)	Inter-Process Communication (2)	" Scripts (5)	Boot or Logon Initialization Scripts (5)	Deobfuscate/Decode Files or Information
Phishing for Information (3)	n Obtain Capabilities (6)	Replication Through Removable Media	Native API	Browser Extensions	Create or Modify System	Deploy Container
Search Closed Sources (2)	II Stage Capabilities (5)	II Supply Chain Compromise (3)	II Scheduled Task/Job (6)	Compromise Client Software Binary	Process (4)	Direct Volume Access
II Search Open Technical Databases (5)		Trusted Relationship	Shared Modules	II Create Account (3)	II Domain Policy Modification (2)	II Domain Policy Modification (2)
II Search Open Websites/Domains (2)		n Valid Accounts (4)	Software Deployment Tools	Create or Modify System Process (4)	Escape to Host	II Execution Guardrails (1)
Search Victim-Owned Websites		and Accounts (4)	II System Services (2)	Event Triggered Execution (15)	II Event Triggered Execution (15)	Exploitation for Defense Evasion
			II User Execution (3)	External Remote Services	Exploitation for Privilege Escalation	File and Directory Permissions Modification (2)
			Windows Management Instrumentation	II Hijack Execution Flow (11)	II Hijack Execution Flow (11)	u Hide Artifacts (9)
				Implant Internal Image	II Process Injection (11)	Hijack Execution Flow (11)
				Modify Authentication Process (4)	n Scheduled Task/Job (6)	II Impair Defenses (9)
				Office Application Startup (6)	n Valid Accounts (4)	Indicator Removal on Host (6)
				II Pre-OS Boot (5)		Indirect Command Execution
				II Scheduled Task/Job (6)		II Masquerading (7)
				II Server Software Component (4)		n Modify Authentication Process (4)
				II Traffic Signaling (1)		II Modify Cloud Compute Infrastructure (1)
				II Valid Accounts (4)		Modify Registry
				(4)		II Modify System Image (2)
						II Network Boundary Bridging (1)
						u Obfuscated Files or Information (6)
						II Pre-OS Boot (5)
						II Process Injection (11)
						Reflective Code Loading
						Rogue Domain Controller
						Rootkit
						II Signed Binary Proxy Execution (13)
						II Signed Script Proxy Execution (1)
						II Subvert Trust Controls (6)
						Template Injection
						n Traffic Signaling (1)
					_	" Trusted Developer Utilities Proxy Execution (1)
						Unused/Unsupported Cloud Regions
						II Use Alternate Authentication Material (4)
MITRE ATT&CK framework					II Valid Accounts (4)	
						n Virtualization/Sandbox Evasion (3)
						Weaken Encryption (2)

XSL Script Processing

Credential Access 15 techniques	Discovery 29 techniques	Lateral Movement 9 techniques	Collection 17 techniques	Command and Control 16 techniques	Exfiltration 9 techniques	Impact 13 techniques
II Adversary-in-the-Middle (2)	II Account Discovery (4)	Exploitation of Remote Services	II Adversary-in-the-Middle (2)	II Application Layer Protocol (4)	II Automated Exfiltration (1)	Account Access Removal
II Brute Force (4)	Application Window Discovery	Internal Spearphishing	II Archive Collected Data (3)	Communication Through Removable	Data Transfer Size Limits	Data Destruction
Credentials from Password Stores (5)	Browser Bookmark Discovery	Lateral Tool Transfer	Audio Capture	Media II Data Encoding (2)	Exfiltration Over Alternative Protocol (3)	Data Encrypted for Impact
	Cloud Infrastructure Discovery	Remote Service Session Hijacking (2)	Automated Collection	II Data Obfuscation (3)	Exfiltration Over C2 Channel	Data Manipulation (3)
	Cloud Service Dashboard	II Remote Services (6)	Browser Session Hijacking	II Dynamic Resolution (3)	Exfiltration Over Other Network	I Defacement (2)
	Cloud Service Discovery		Clipboard Data		Medium (1)	II Disk Wipe (?)
	Cloud Storage Object Discovery	Replication Through Removable Media	Data from Cloud Storage Object	Encrypted Channel (2) Fallback Channels	Exfiltration Over Physical	II Endpoint Denial of Service (4)
II Input Capture (4)	Container and Resource Discovery	Software Deployment Tools	Data from Configuration		Medium (1)	Firmware Corruption
	Domain Trust Discovery	Taint Shared Content	Repository (2)	Ingress Tool Transfer	Exfiltration Over Web Service (2)	Inhibit System Recovery
Network Sniffing	File and Directory Discovery	Use Alternate Authentication	Data from Information Repositories (3)	Multi-Stage Channels	Scheduled Transfer	II Network Denial of Service (2)
	Group Policy Discovery	Material (4)	Data from Local System	Non-Application Layer Protocol	Transfer Data to Cloud Account	Resource Hijacking
	Network Service Scanning		Data from Network Shared Drive	Non-Standard Port		Service Stop
	Network Share Discovery		Data from Removable Media	Protocol Tunneling		System Shutdown/Reboot
	Network Sniffing		II Data Staged (2)	II Proxy (4)		
Two-Factor Authentication Interception	Password Policy Discovery		II Email Collection (3)	Remote Access Software		
II Unsecured Credentials (7)	Peripheral Device Discovery		II Input Capture (4)	II Traffic Signaling (1)		
	II Permission Groups Discovery (3)]	Screen Capture	II Web Service (3)		
	Process Discovery		Video Capture			
	Query Registry					
	Remote System Discovery					
	II Software Discovery (1)]				
	System Information Discovery					
	II System Location Discovery (1)]				
	Bystem Network Configuration Discovery (1)					
	System Network Connections Discovery					
	System Owner/User Discovery					
	System Service Discovery					
	System Time Discovery					
	II Virtualization/Sandbox Evasion (3)	1				
,	1-1	1				

MITRE ATT&CK framework

Example of attacks

Attacks that allow an attacker to <u>deterministically</u> <u>alter the execution flow of a program by submitting</u> <u>crafted input to an application</u>. Executable code is written outside the boundaries of a memory buffer originally used for storing data. The executable parts is somehow made to execute, e.g. by manipulate return adress to be used when a function call is finished.

Description

Real world examples: OpenBSD IPv6 mbuf's* remote kernel buffer overflow[1], windows kernel pool

Attack

method

Buffer

overflow

Svnonvms an	d var	iants

Synonyms: memory corruption attack, Buffer overrun, Stack smashing,

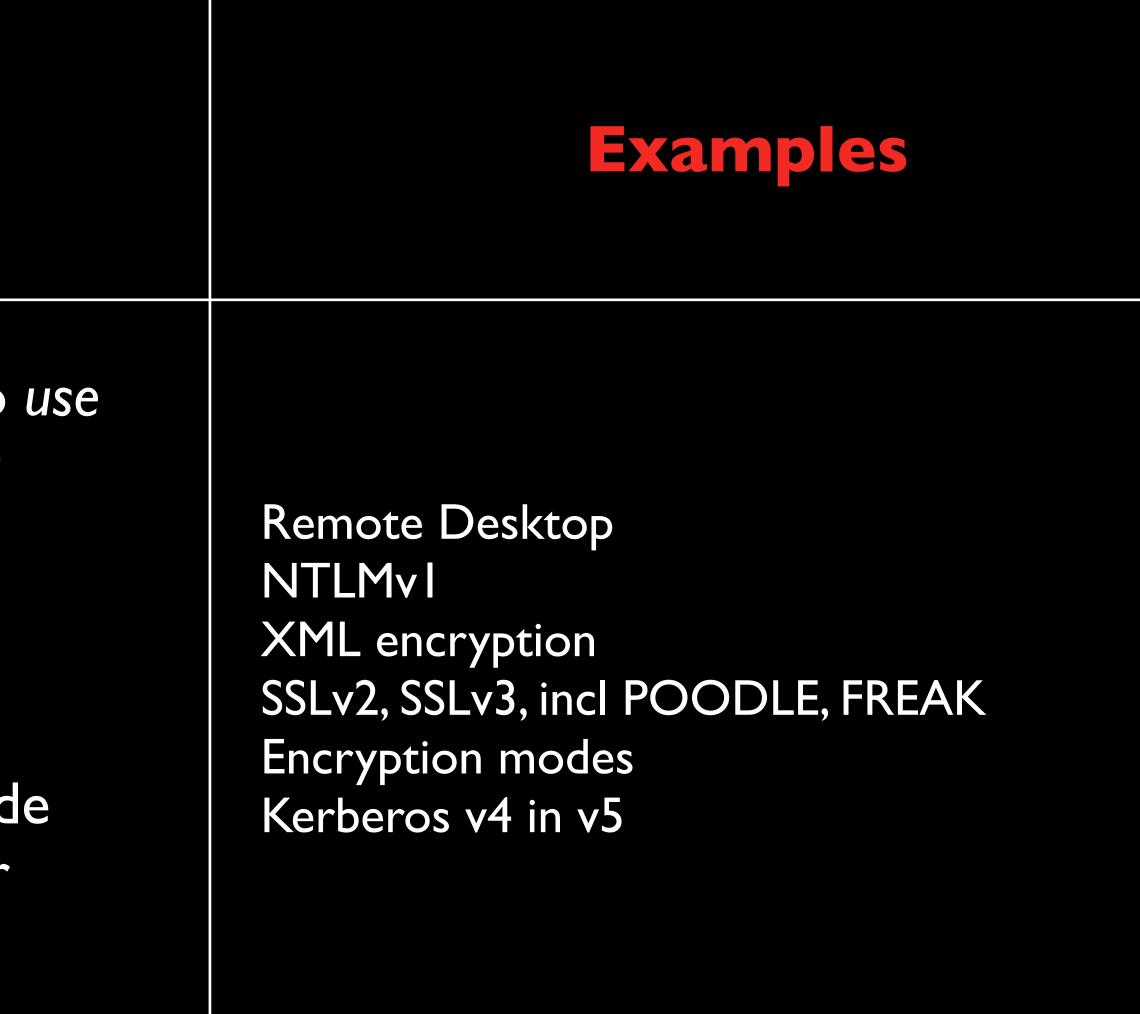
Variants: Heap smashing, format string bugs,

Example of attacks

Attacks that allow an attacker to use

• an older version of a service, or

Description


- an old protocol, or
- an older mode, or
- call legacy code

Sometime triggered by downgrade attack, a negotiation to use older variant

Backward compability

Attack

method

Attacks and counter measures

Hijacking JIT compilers ROP attacks

Address Space LayoutNo-executableData ExecutionRandomization (ASLR)(NX,W^X) stacksPrevention (DEP)

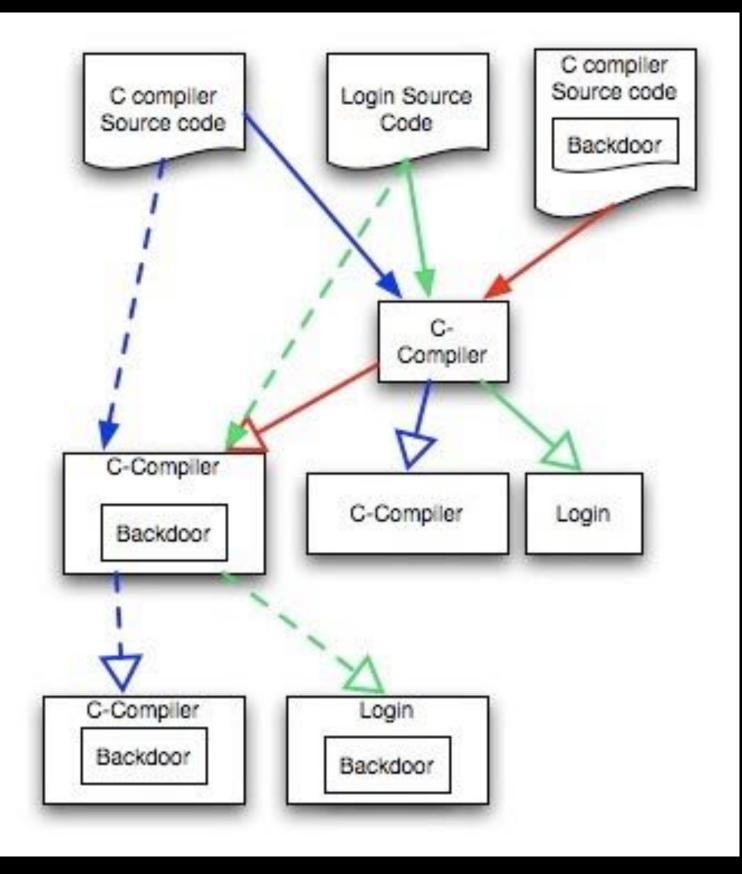
More advanced buffer overflows, defeating canary

Stack canaries Buffer overflow/memory corruption attacks Note - several of these counter measures does not work for protection **within** the kernel

Attacks and counter measures

• Chaining of attacks - combining a number of exploits to achieve goal

finding and abusing a number of different


 Code execution in gadgets (ROP) + sandbox escape + elevation of privileges + execution of privileged code

vulnerabilities might allow an attacker to achieve goals not possible with just one potent exploit

A classic attack

Ken Thompson's trojanized c compiler

- Modify the source code to the compiler to recognize if it recompile itself or the login program - insert backdoor in login
- recompile compiler
- remove source code changes and recompile the compiler
- recompile the login program with the modified compiler
- No visible signs for humans or tools to see the backdoor in source code. Calls for binary inspection or decompilation.

Ken Thompson - TURING AWARD LECTURE: Reflections on Trusting Trust. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

Example of attacks

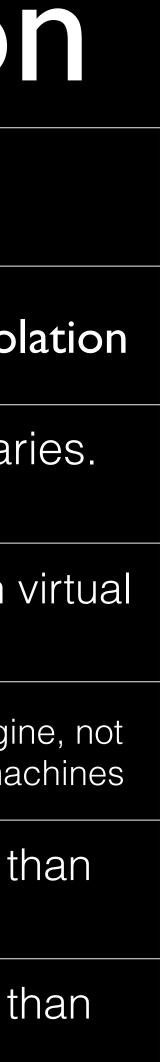
Remember that there is a number of ways that all OS security controls can be bypassed, especially if the operating system is not running - a very good side-channel attack ;-)

Virtualization and isolation

sandboxes, containers, hypervisors, etc

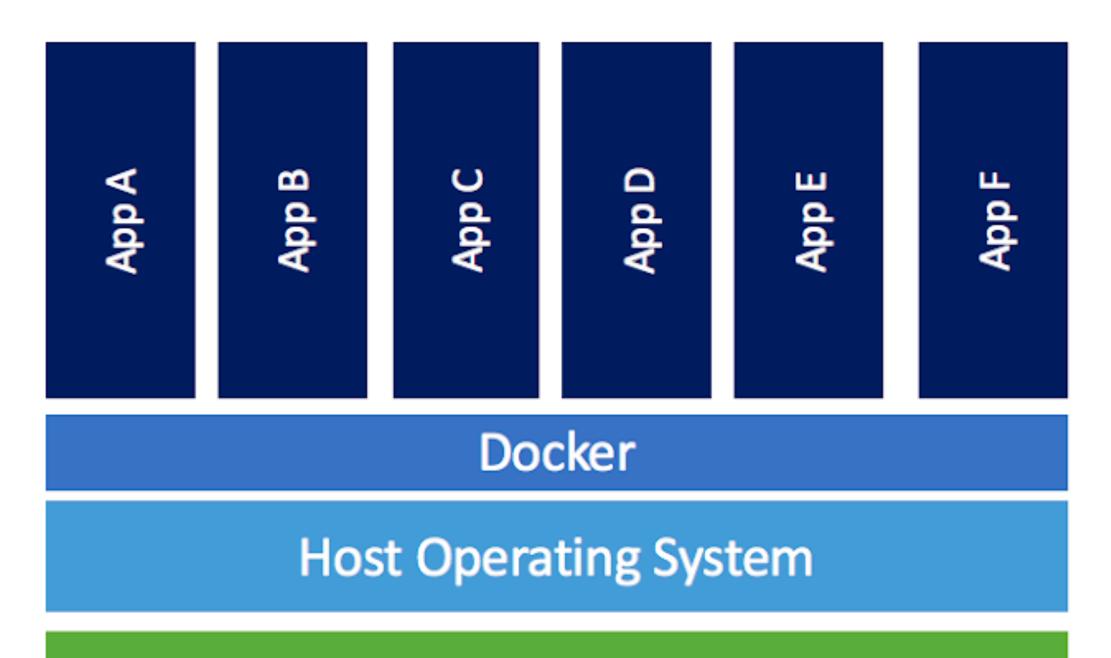
Sandboxing

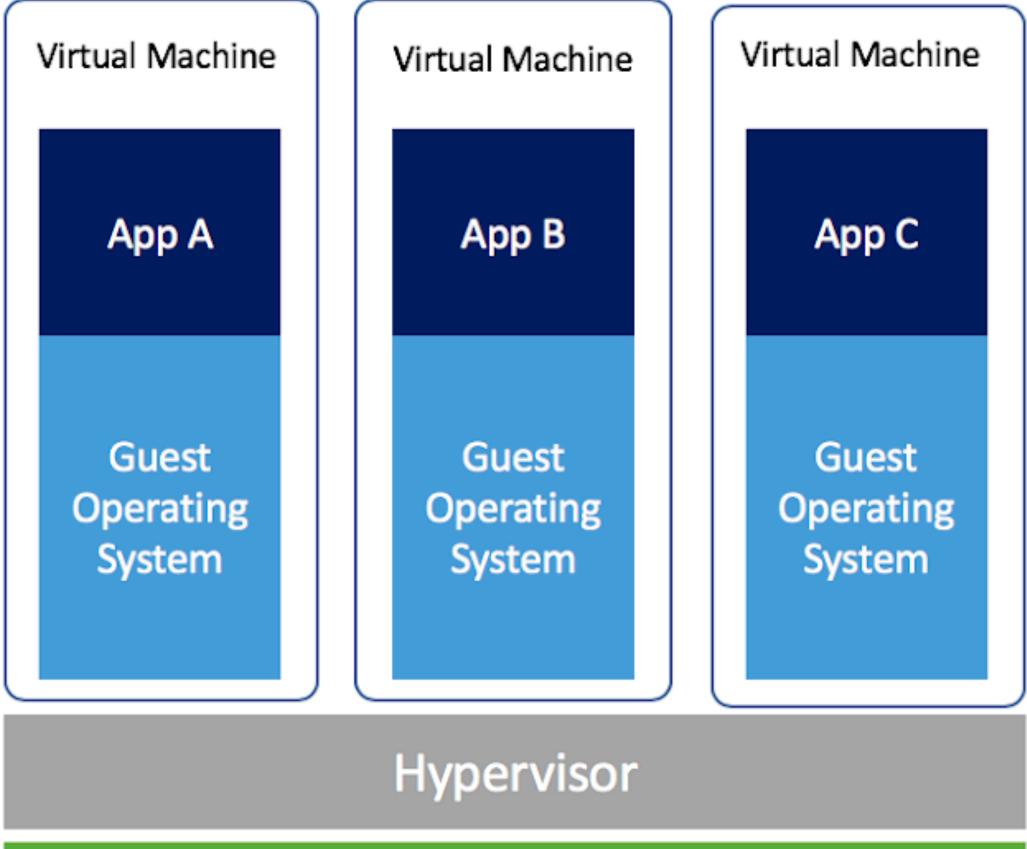
- Various types of OS supported or application supported sandboxing is good as a way to get defense-in-depth
- Create temporary execution environments for certain tasks
 - test of exe files to lure out malicious code execution
 - perform certain tasks that is more prone to attacks
 - perform certain tasks that is more sensitive
- Provide *isolation*, from other parts of system


Pro's and con's with virtualization

- Some sandbox and isolation technologies are not complete virutalization or separation
 - E.g. share name space (processes, file system, etc)
 - Share operating system kernel
 - Share drivers

Isolation, separation and virtualization


Example	Description	
Change root for network service	Classic Unix concept. No virtualization, just iso	
FreeBSD Jails	Userland. Can run FreeBSD and Linux binar Integrated into OS.	
	Userland. More lightweight and thus faster than machines	
Docker	Userland. 3rd party tool on top of OS. Need container enginer hypervisor. More lightweight and thus faster than virtual ma	
Xen,VMware vSphere, HyperV,	Type 1 hypervisor based. Stronger isolation t container	
VMware Workstation, KVM	Type 2 hypervisor based. Stronger isolation t container	
Sun LDOMs, IBM LPAR	Best isolation and separation. Hardware support gives superior performance and se	
	Change root for network service FreeBSD Jails Docker Xen,VMware vSphere, HyperV,	



Overview of virtualization

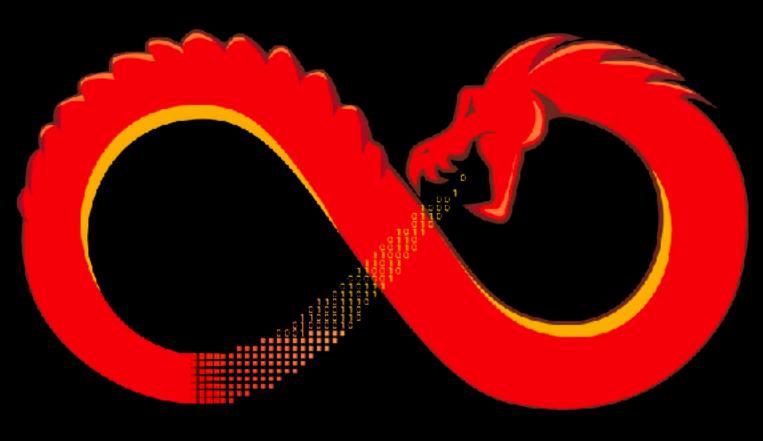
Containerized Applications

Infrastructure

Infrastructure

Pro's and con's with virtualization

- Isolation, and to have hardened and dedicated servers running specific services, are standard ways to minimize attack surface. Virtualization tools can help this
- Its easy to believe that virtualization will automatically make things secure, and that there is no way to jump between guest os', but exploits have shown this not hold true, e.g. cloudburst


http://www.immunityinc.com/documentation/cloudburst-vista.html

Advanced attacks

Hardware attacks, etc

binaries

Attack tools

- Reverse Engineering Frameworks, such as Ghidra help debugging, disassemble, reverse engineer
 - Give attackers powerful tools to introspect into applications, drivers, kernels

Example of attacks

- Attacks by attaching malicious hardware to buses and ports
 - Using debug interfaces to snoop & manipulate bus
 - **JTAG** (IEEE standard 1 49.1-1990)
 - **SWD** (Serial Wire Debug)
- Firewire and other DMA based methods to access memory of a computer (evil maid attacks, evil devices
- UEFI attacks via Thunderbolt (thunderstruck attack)

Example of attacks Removal of, or direct attachment to, physical memory chips (cold boot attacks)

Example of attacks: cold boot attacks

F-secure "The Chilling Reality of Cold Boot Attacks" https://www.youtube.com/watch?v=E6gzVVjW4yY

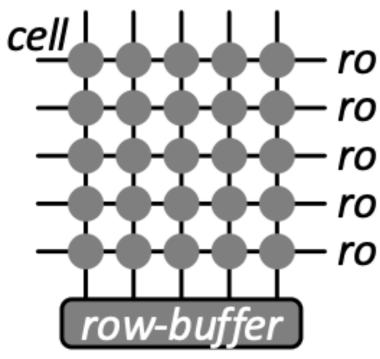
Example of attacks: PCILeech

Ulf Frisk - "Attacking UEFI Runtime Services and Linux" https://www.youtube.com/watch?v=PiUVRHYTDUg

Attacking **UEFI** Runtime Services and Linux

Example of attacks: HW implants

https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/


(TS//SI//NF) Left: Intercepted packages are opened carefully; Right: A "load station" implants a beacon

Advanced attacks

- Rowhammer*
 - Flipping bits without accessing them
 - Method of reading writing memory cells so that memory cells in adjacent rows become changed
 - Based on an unintended side effect in dynamic random-access memory (DRAM) that causes memory cells to leak their charges and interact electrically between themselves, possibly altering the contents of nearby memory rows that were not addressed in the original memory access

"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"

- Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, Onur Mutlu, at CMU

row 3 row 2 row 1 row O

• Rowhammer*

• This circumvention of the isolation between DRAM memory cells

• Memory leak == information leak

- on Android
- Can be used to attack Virtual Machines

• Have been used to Gain Kernel Privileges, e.g. DRAMMER attack

• Rowhammer

- Have been implemented in JavaScript and runned in a browser
- Modern variants* have been used to defeat ECC memory

* "Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks" https://cs.vu.nl/~lcr220/ecc/ecc-rh-paper-eccploit-press-preprint.pdf

cript and runned in a browser I to defeat ECC memory

- Rowhammer*
- Initial research published 2014, but variants have been developed later
- Hardware solutions to protect against it have been circumvented
 - Blacksmith
 - Half-double

variants have been developed later inst it have been circumvented

- Meltdown* & Spectre**
 - Low-level **cache** attacks, allow malicious READ's
 - Meltdown breaks isolation between <u>user land</u> and <u>kernel</u>
 - Spectre breaks isolation between applications in <u>user land</u>

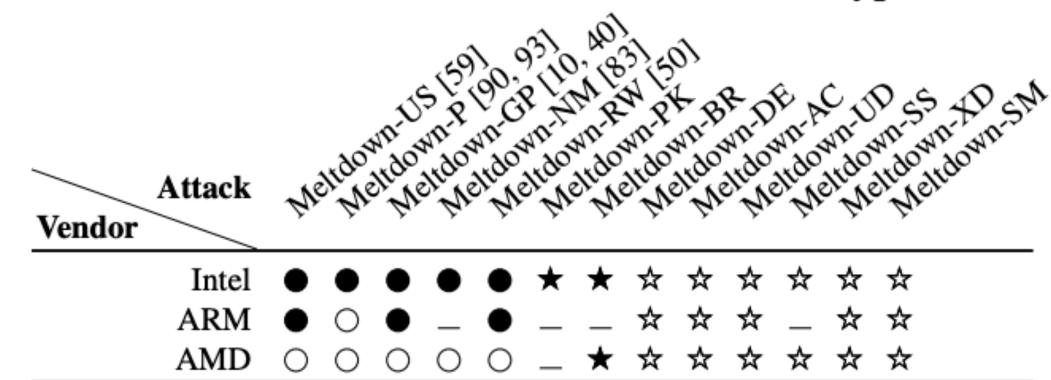
https://meltdownattack.com/

* Lipp et al "Meltdown: Reading Kernel Memory from User Space" https://meltdownattack.com/meltdown.pdf

** Kocker et al "Spectre Attacks: Exploiting Speculative Execution" https://spectreattack.com/spectre.pdf

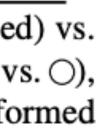
- Meltdown & Spectre
 - work on personal computers, mobile devices, and in the cloud
 - Works on Windows, Linux, Android, etc
 - Works on containers: docker, LXC, OpenVZ etc

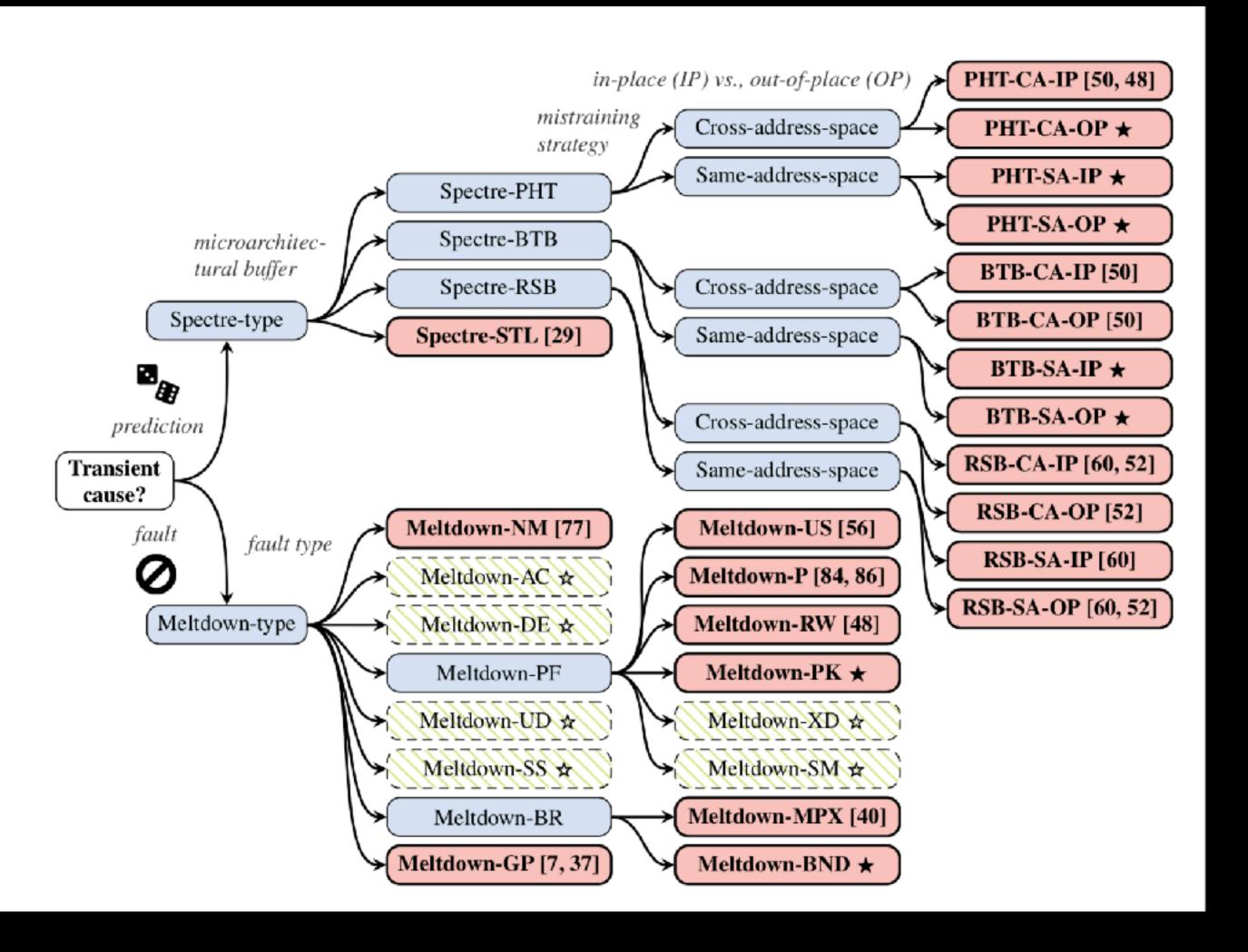
• Spectre class vulnerabilities will remain unfixed because otherwise CPU designers will have to disable speculative execution which will entail a massive performance loss


Meltdown & Spectre

		Attack	Spectre-PH	Spectre-BT	B Spectre-RS	B Spectre-STL
	Metho	d	590	590	590	590
Intel	same-address-space	in-place out-of-place				● [32] ○
	cross-address-space	in-place out-of-place		• [52, 18] • [52]	● [62, 54] ● [54]	0
ARM	same-address-space	in-place out-of-place			● [6] ● [6]	● [6] ○
	cross-address-space	in-place out-of-place			☆ ☆	0
AMD	same-address-space	in-place out-of-place		★ ☆	* *	● [32] ○
	cross-address-space	in-place out-of-place		●[52] ☆	* *	0

Symbols indicate whether an attack is possible and known (), not possible and known (\bigcirc), possible and previously unknown or not shown (\bigstar), or tested and did not work and previously unknown or not shown (\ddagger). All tests performed with no defenses enabled.




All modern CPUs are vulnerable (x86, AMD, ARM) in various degrees

Symbols indicate whether at least one CPU model is vulnerable (filled) vs. no CPU is known to be vulnerable (empty). Glossary: reproduced (\bigcirc vs. \bigcirc), first showed in this paper (\bigstar vs. \bigstar), not applicable (_). All tests performed without defenses enabled.

> * Canello et al "A Systematic Evaluation of Transient Execution Attacks and Defenses" https://arxiv.org/pdf/1811.05441.pdf

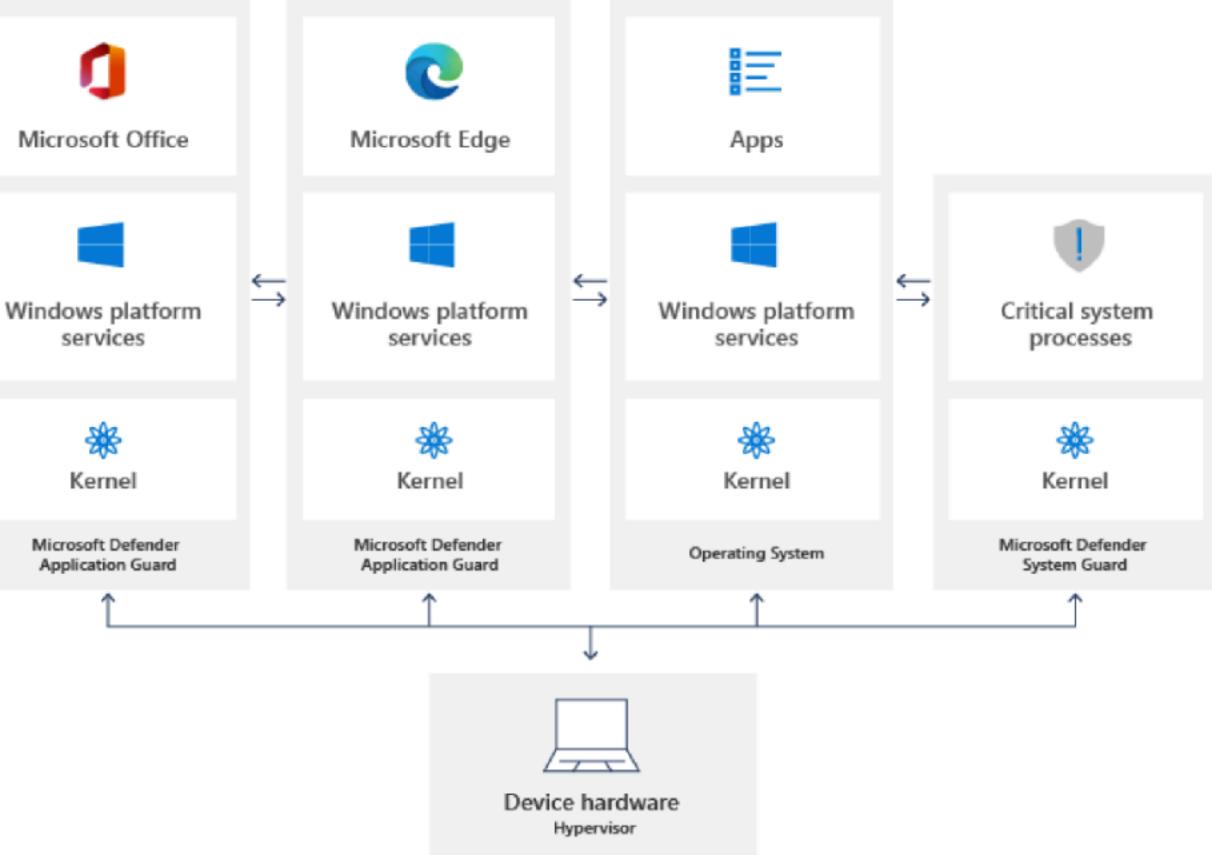
https://en.wikipedia.org/wiki/Transient_execution_CPU_vulnerability

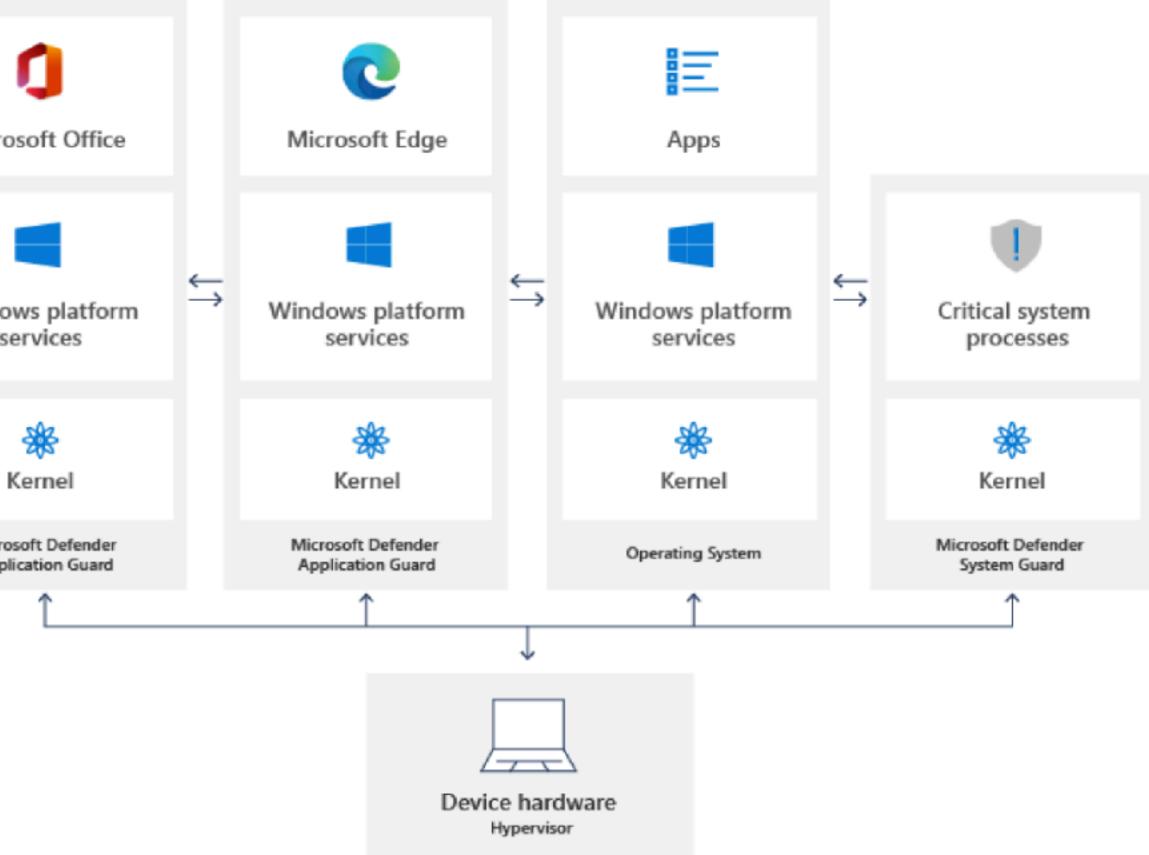
• Attacks against Intel Management Engine

- Proprietary and non-documented
- Own OS (Minix!)
- Reverse engineered and analysed by attackers • Found multiple vulnerabilities in Skylake & Kabylake
- architecture

Examples of modern security controls

Windows Defender security features in Win 10, Win 11





- App & browser control
- Isolation browsing

Windows Device Guard, now called Windows Defender **Application Control**

https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview

Windows

- Windows Device Guard, And Applocker, now called Windows Defender Application Control
 - Attributes of the codesigning certificate(s) used to sign an app and its binaries
 - Attributes of the app's binaries that come from the signed metadata for the files, such as Original Filename and version, or the hash of the file

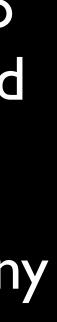
The path from which the app or file is launched

https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview

- - computer

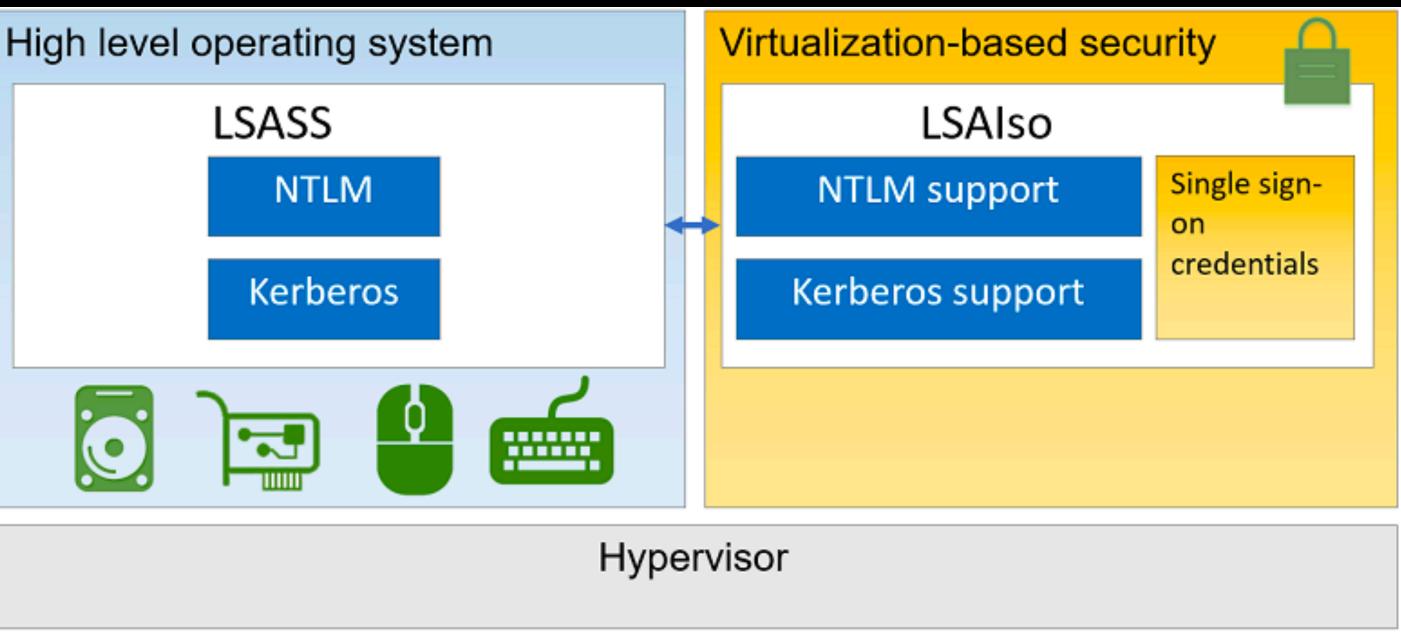
Core isolation with Memory integrity, aka Hypervisor-protected Code Integrity (HVCI) make it difficult for malicious programs to use low-level drivers to hijack your

- Windows Defender Exploit Guard, WDEG
 - threats
 - SmartScreen
 - processes from accessing your protected folders
 - configured to protect your system and applications


https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78

Attack Surface Reduction (ASR): A set of controls that enterprises can enable to prevent malware from getting on the machine by blocking Office-, script-, and email-based

• Network protection: Protects the endpoint against web-based threats by blocking any outbound process on the device to untrusted hosts/IP through Windows Defender

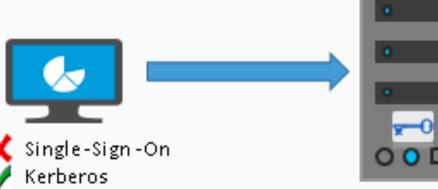

Controlled folder access: Protects sensitive data from ransomware by blocking untrusted

Exploit protection: A set of exploit mitigations (replacing EMET) that can be easily

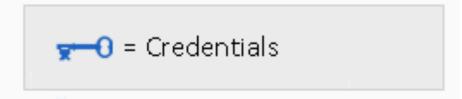
Windows Credential Guard

- To protect Local Security Authority Server Service (LSASS) by moving it into LSAlso
- Build on top of
 - Virtualization Based Security (VBS)
 - Secure boot
 - Trusted Platform Module (TPM)
 - **UEFI** lock

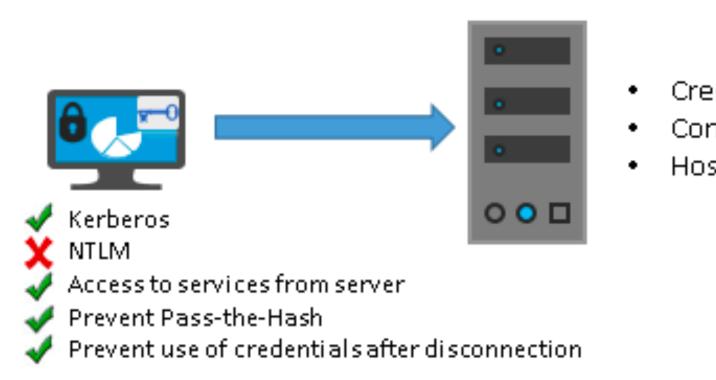
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service


- Windows Remote Credential Guard
- To protect against theft of credentials sent to server side
 - Others that have admin access to the server

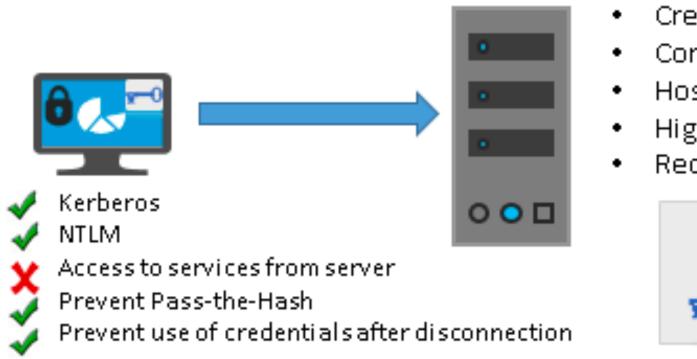
Especially important on jump hosts


https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works

Remote Desktop connection to a server without Windows Defender Remote Credential Guard


- Credentials sent to server
- Credentials are not protected from attackers on remote host •
- Attacker can continue to use credentials after disconnection

- Kerberos
- Access to services from server
- Prevent Pass-the-Hash
- Prevent use of credentials after disconnection



Windows Defender Remote Credential Guard

Restricted Admin Mode

Credentials protected by Windows Defender Remote Credential Guard Connect to other systems using SSO Host must support Windows Defender Remote Credential Guard

- Credentials used are remote server local admin credentials Connect to other systems using the host's identity Host must support Restricted Admin mode
- Highest protection level
- Requires user account administrator rights

😴 🗝 = Credentials

MacOSX

• GateKeeper

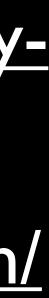
• Checks code signing

• XProtect

Malware protection

Tools mentioned during the class

- Ghidra Reverse Enginering Framework
- IDA pro Disassembler
- Hexray Decompiler
- Ollydbg, windbg Other disassemblers
- Bindiff Advanced tool from zynamics to compare binaries, with call graphs etc. Not same as built-in windows tool with same name.


- https://www.commoncriteriaportal.org/
- <u>https://www.cvedetails.com/top-50-products.php</u>
- https://owasp.org/www-project-top-ten/

• <u>https://www.cs.virginia.edu/~av6ds/papers/isca2021a.pdf</u>

- <u>http://en.wikipedia.org/wiki/Source lines of code</u>
- https://sources.debian.org/stats/
- lines-of-code/

• <u>https://informationisbeautiful.net/visualizations/million-</u>

- <u>https://docs.microsoft.com/en-us/windows/security/identity-</u> protection/credential-guard/credential-guard-how-it-works
- https://docs.microsoft.com/en-us/deployedge/microsoft-edge-securitywindows-defender-application-guard
- <u>https://docs.microsoft.com/en-us/windows/security/threat-protection/</u> <u>microsoft-defender-application-guard/md-app-guard-overview</u>
- https://docs.microsoft.com/en-us/windows/security/identity-protection/remote-credential-guard

- https://en.wikipedia.org/wiki/ Local Security Authority Subsystem Service
- http://citeseerx.ist.psu.edu/viewdoc/download? <u>doi=10.1.1.91.5728&rep=rep1&type=pdf</u>

• <u>https://support.microsoft.com/en-us/windows/core-</u> isolation-e30ed737-17d8-42f3-a2a9-87521df09b78