
Security and security controls
in operating systems

A quantitative approach
2023-02-27

Robert Malmgren
rom@romab.com

mailto:rom@romab.com

1 minute presentation

• Consultant in IT and infosec since 20+ years

• Working alot on with critical infrastrucutre protection, process
control, SCADA security etc, but also in financial sector,
government, etc

• Work covers everything from writing policies, requirement
specs and steering documents to development, penetration
testing, incident handling and forensics

Outline of talk

• Intro

• Background and basics

• Security problems & vulnerabilities

• Example of operating systems and security

• Trends

Some short notes

• The focus is on general operating system used in general computers -
COTS products

• Embedded systems, code for micro controllers, etc often lack most
fundamental security features

• Some experimenal OS’s and domain specific solutions have better-than-
average security concepts and security controls, e.g. military grade usage

Background and basics
Part 1: protection, security controls

Intro - foundation

• Modern software is normally formed into components, parts and layers in systems

• Layers and isolation is a way to provide separation, which can be:

• Logical/ Virtual: A way to make it appear that execution environment have exclusive access

• Physical: Different computers, different CPUs/cores, different disks

• Time based: Separation of execution time/Timeshare

• Based on security technologies, i.e. cryptographic

Intro - foundation

• Complex systems

• …run multiple programs at once,

• …have multiple users,

• …store huge amounts of data,

• …is interconnected via networks

Intro - foundation

• This there is to built-in security into the foundation of the systems - the
operating system

• To identify and authorize users of the system

• To allow for an environment where necessary basic controls are in place

• To prevent unauthorised access to OS resources

Some concepts and principles
TCB - Trusted Computing Base

RBAC - Role Based Access Control

Principle of least privilege

MAC - Mandatory Access Control

DAC - Discretionary Access Control

Principle of least surprise

Capabilities and requirements
Need Description Example

Protect a system resource
Prohibit malicious or

unintentional access to
system resources

System tables, direct
access to I/O-units,
 memory protection

Authorization checks for
usage of system calls and

system resources

Provide controlled access to system, so
that system mainain system integrity
and provide continuous security to

application and information

reference monitor

Separation of resources Physical, Logical, temporal or
cryptographical separation

separation in
running time

Some important
concept

• Reference monitor

• Trusted Computing Base, TCB

• All things in the trusted part of the OS necessary
to enforce the security policy

[1] Lampson et al: Authentication in Distributed Systems: Theory and Practice

Principal
Reference

monitor
Do

operation
Object

Source Request Guard Resource

Principles for secure design*
Economy of mechanism Keep the design as simple and small as possible

Fail-safe defaults Base access decisions on permission rather than exclusion

Complete mediation Every access to every object must be checked for authority

Open design The design should not be secret

Separation of privilege technique in which a program is divided into parts which are limited to
the specific privileges they require in order to perform a specific task

Least privilege
Every program and every user of the system should operate using

the least set of privileges necessary to complete the job

Least common mechanism
Minimize the amount of mechanism common to more

than one user and depended on by all users

Psychological acceptability
It is essential that the human interface be designed for
ease of use, so that users routinely and automatically

apply the protection mechanisms correctly

JEROME H. SALTZER et al The Protection of Information in Computer Systems http://www.cs.virginia.edu/~evans/cs551/saltzer/

http://www.cs.virginia.edu/~evans/cs551/saltzer/

The classical ring model

Källa http://en.wikipedia.org/wiki/File:Priv_rings.svg

Kernel

Userland

UNIX x86
Least

privileges

Highes
privileges

http://en.wikipedia.org/wiki/File:Priv_rings.svg

Interaction between
application and OS

Exekverande
process

Exekvera
systemanrop

Anrop till
systemanrop

Process i userland

Fortsatt
exekvering

Trap

Kernel

Executing
process

Call
systemcall

Continue
execution

Perform systemcall

Overview of operating system (1/2)

Kernel

Drivers

subsystems
libraries

Applications

Servers
compilers

Tool chain

Overview of operating system (2/2)

Applikationer Applikationer Applikationer Applikationer

Systemanrop in mot operativsystemskärnan

operativsystemskärna med basfunktioner

Gränssnitt mot hårdvara

Nätverk
Minnes-

hantering
Datalagring CPU

Användare

nr 1

Användare

nr 2

Problem with these pictures and concepts

• Layering violation

• some software might skip a layer and call an underlaying layer directly
and hence bypass controls

• In some scenarios attackers might come an unexpected way

• Attacking from host operating system against guest operating systems in
a virtual machine environment

The classical ring model, updated

Källa: http://en.wikipedia.org/wiki/File:Priv_rings.svg

Other rings

-1 Hypervisor Allow guest OS ”ring 0”

-2 System Management Mode APM/ACPI/TPM-support

-3
 Intel Management Engine /
 AMD Platform Security

Processor

Special software running in
the Platform Controller Hub

(PCH) processor

Källa: https://medium.com/swlh/negative-rings-in-intel-architecture-the-security-threats-youve-probably-never-heard-of-d725a4b6f831

http://en.wikipedia.org/wiki/File:Priv_rings.svg

Problem with these concepts
• You have a “hidden” processor on your computer

• Its functionality has never been publicly documented

• It appears to have been customized for certain TLA government agencies

• It has unlimited access to the main processor

• It has unlimited access to all memory

• It has unlimited access to all peripherals

• It has its own MAC and IP addresses

• It runs a web server

• It is always running

• You can’t turn it off

• You can’t disable it

• It has had multiple known exploitable vulnerabilities

• It is the single most privileged known element of an Intel Architecture processor chipset

Memory handling
• RAM memory is a central resource that in a controlled way must be shared

and handled between operating system, applications and other components

• Modern computer systems have hardware support for memory protection,
e.g. MMU

• OS support is required to use the hardware supported memory
protection

• Modern hardware support can enforce several security features related
to isolation, non-executable memory areas, etc

File system

• A file system is often a central component in a computer system w.r.t. security
and protection

• Besides the actual file content, there is meta data that is of importance

• File owner, dates of creation/change/access, access information, security labels,
etc

• Manipulation of meta data can in some cases be more serious security breach
than the manipulation of the file content itself. Or a combo of both can be
misleading and hide the fact that a file has been altered

Local filsystem

File system Description Comment

FAT No access control Classic MS-DOS

NTFS Discretional Access Control via ACL Advanced possibilities
to make controls

UFS Discretional Access Control, writing & program
execution for owner, group, “others”

Simple access
controls

Network file systems

File system Description Comment

NFSv3 Hostbaserad accesskontroll, uid Trivial to
circumvent

NFSv4 Secure RPC, KRB5a, KRB5p, KRB5i
Require a Kerberos server, KDC

a= authentication
i=integrity = calculate MAC
p= privacy = encrypt packet

SMB/CIFS KRB5a

Comparing security in
Operating systems (1/5)

• When in time was the system developed?

• What was the state-of-the-art at that time?

• What trends where currently in fashion?

Comparing security in
Operating systems (2/5)

• Development methodologies

• Open Source or Closed Source?

• What support do one use to ensure that security is built into the product?

• How does one ensure that implementation is a correct representation of
the design, that is a correct interpretation of the analysis?

”Given enough eyeballs, all
bugs are shallow”

- Linus' Law

http://en.wikipedia.org/wiki/Software_bug

Comparing security in
Operating systems (3/5)

Source Lines Of Code - SLOC

http://en.wikipedia.org/wiki/Source_lines_of_code

Year OS SLOC
in millions

1993 Windows NT 3.1 4-5

1994 Windows NT 3.5 7-8

1996 Windows NT 4.0 11-12

2000 Windows 2000 more than 29

2001 Windows XP 40

2003 Windows Server 2003 50

2007 Windows vista 50

2015 Windows 10 40-60

Year OS SLOC
in millions

2003 Debian 2.2 55-59
2006 Debian 3.0 104
2008 Debian 3.1 215
2010 Debian 4.0 283
2005 Mac OS X 10.4 86

1991 Linux 0.0.1 10,239 lines
1994 Linux 1.0 176,250 lines
2003 Linux kernel 2.6.0 5,2
2005 Linux kernel 2.6.11 6.6
2009 Linux kernel 2.6.29 11.0
2009 Linux kernel 2.6.32 12.6
2011 Linux kernel 3.0 14,6
2018 Linux kernel 4.X 25
2020 Linux kernel 5.12 28.8

But really, what good is this comparison?

Write more code = get higher salary?
Manage a 200K-SLOC project is cooler than a 5K-SLOC?

More code = more bugs?

More code = more security checks and advanced concepts like crypto, resillient
failure checking built into everything?

But certainly, complexity is considered bad and evil in the context of security.
And there is often a relation between complexity and size of program

https://informationisbeautiful.net/visualizations/million-lines-of-code/ https://sources.debian.org/stats/

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29

• What can one gain by having formal certification of operating systems,
subsystems or application

• Trusted Computer System Evaluation Criteria (TCSEC), Common
Criteria (CC, ISO/IEC 15408), etc

• More a theoretical excersice than of any real value?

Comparing security in
Operating systems (5/5)

https://www.commoncriteriaportal.org/

Background and basics
Part 2: bugs and vulnerabilities

Intro - just the basic facts

• All software is prone to bugs

• Some bugs will have an impact that can have security implications - data leaks,
destruction of data, privilege escalations

Intro - just the basic facts
• Some bugs help to circumvent security mechanisms

• Some security designs are flawed, or build on flawed assumptions

Operating system security

• Security problems in the operating system can affect the integrity of the
system itself

• Someone else can control the system to their own liking - pwnd!

• Bugs in OS kernel can affect system integrity

• Security problems with the operating system can in turn affect the security
in applications and subsystems (databases, middle ware, etc)

http://en.wikipedia.org/wiki/Pwn

http://en.wikipedia.org/wiki/Pwn

Some concepts and terms
Vulnerability

Exploit

Foreverday exploit
0day exploit

CVE-2021-1234

Stack smashing

Heap overflow

Stack overflow
Race conditions

Intro - the basics

• Some bugs are undiscovered for some time, they lay latent

• Once discovered, they can be abused, if it is an security vulnerability, that can be
exploited

• A discovered security bug, is sometime called a 0day, until it is mitigated

Intro - the basics

• Nowdays bugs and vulnerabilities tend to get names
(heartbleed, ghost, shellshock, etc) and logos

• also some bugs/vulnerabilities gets
”formal name”, i.e. CVE*,
and a scoring CVSS**

• e.g. CVE-2011-3172

** https://www.first.org/cvss/specification-document** * ”Common Vulnerabilities and Exposures;” https://cve.mitre.org/

https://www.first.org/cvss/specification-document**

Some concepts and principles

• Attack vector - Different paths to reach an vulnerability. One path might be
closed by a vendor patch, but another might still be there, if the root cause
is not identified and fixed.

• Reverse engineering - To re-create the original design by observing the final
result, in computer science - to re-create some source code by examing a
binary.

Linux dialects

Windows versions

Apple OS’s

Examples of different protection solutions

General example of control principles
Security
controls Description Example Where?

Encryption
Protection against
eavesdropping or

unauthorized access

network traffic, file content, disk
partitions, memory pages, swap files/

page area
OpenSSL, IPSec, SSH, OS kernel

Electronic
signatures

Protection against
changes or unauthorized

modifications by
third parties,

network traffic,
file content,

disk partitions
OpenSSL, IPSec, SSH, OS kernel

Cryptograph
-ically strong
hash values

Protection against
unauthorized changes,

detect errors or
changes

Saved passwords,
file content,

Password file, user database,
checksums on files

Security
controls Description Example Where?

Random
numbers

Make a resource non-
deterministic

File names, proccess ID,’s
port numbers,

sesssion keys, session id’s,
 transaction numbers,

DNS query ID’s,
execution time & timing

getrandom()
 /dev/urandom

Constant
numbers

Make a resource non-
deterministic

execution time,
timing of events

Crypto code to prevent
side channel attacks

General example of control principles

https://www.redhat.com/en/blog/understanding-red-hat-enterprise-linux-random-number-generator-interface?extIdCarryOver=true&sc_cid=701f2000001OH7JAAW

Security
controls Description Example

Compiler
generated

airbag - canary

Make sure buffer overflows dont
get undetected

ProPolice, VisualStudio /GS

ASLR

Randomize addresses used by
applications. Make sure its hard to
write code that knows of addresses.

Where did that lib go?

Android >4.0,
iOS > 4.3,

Windows >Vista,
OpenBSD/NetNSD,

Linux >2.6.12, MacOSX >10.5,
Solaris >11.1, etc

KASLR Randomize addresses used by kernel
Windows Vista, NetBSD,

Linux >3.14, MacOSX 10.8,
 Android 11, etc

General example of control principles

Security
controls Description Example

DEP, NX, W^X
Make sure memory is

not executable

IE on Windows Vista,
Android >2.3, FreeBSD > 5.3, OpenBSD, Linux >2.6.8,

MacOSX >10.5, etc

MTE Memory Tagging Extension Using ARM architecture feature to better protect
against memory safety violations

General example of control principles

Security
controls Description Example

Secure boot chain /
Verified boot

Make system startup sequence is secure
Make sure that each step of boot is

cryptographically signed to ensure code integrity,
e.g. BIOS vs UEFI

Secure pairing Make sure to connect to peripherals and
resources in a secure way

Using bluetooth to connect to headset,

General example of control principles

General example of control principles

Security
controls Description Example

Scrubing, zeroing
Make sure that old data areas are
cleaned before usage or returned to

system
memory, file systems, VM system

Logs,
audit trails

Traces, error messages and
dumps from systems and

applications

Windows Eventlog,
Syslog,

audit, BSM

Apple iOS device security

App Sandbox

Secure Enclave
Secure Element
Crypto Engine

Apple device security

Secure Enclave

Examples of vulnerabilities and attacks

Host security

Network security

Human security

Kernel
Last line

of
defense

Application
security

Where do attacks occur?

User / admin errorsRemote
exploits

Local
exploits

Soc
ial
engi
nee
ring
atta
cks

Most common attacks?

OWASP top-10 list

Most common attacks?

OWASP top-10 list

General examples of threats and attacks

Confidentiality
Availability

System integrity

Data integrity

fork bombs SYN flood
Wrong file permissions

unintentional filling of disk space

Sensitive plaintext in RAM

Bypassed security checks

Manipulated system configuration

Manipulated application
program binaries Zapped system logs

intentional filling of disk space

malformed network packets

Manipulated user files

Crashdumps with credentials or crypto keys

Manupulated database content

Manipulated system binaries

MITRE ATT&CK framework

MITRE ATT&CK framework

Example of attacks
Attack
method Description Synonyms and variants

Buffer
overflow

Attacks that allow an attacker to deterministically
alter the execution flow of a program by submitting
crafted input to an application. Executable code is
written outside the boundaries of a memory
buffer originally used for storing data. The
executable parts is somehow made to execute,
e.g. by manipulate return adress to be used when
a function call is finished.

Real world examples: OpenBSD IPv6 mbuf’s*
remote kernel buffer overflow[1], windows
kernel pool

Synonyms: memory corruption attack, Buffer
overrun, Stack smashing,

Variants: Heap smashing, format string bugs,

[1] http://www.coresecurity.com/content/open-bsd-advisorie * An mbuf is a basic unit of memory management in the kernel IPC subsystem

http://www.coresecurity.com/content/open-bsd-advisorie

Example of attacks
Attack
method Description Examples

Backward
compability

Attacks that allow an attacker to use
• an older version of a service, or
• an old protocol, or
• an older mode, or
• call legacy code

Sometime triggered by downgrade
attack, a negotiation to use older
variant

Remote Desktop
NTLMv1
XML encryption
SSLv2, SSLv3, incl POODLE, FREAK
Encryption modes
Kerberos v4 in v5

https://www.isg.rhul.ac.uk/~kp/BackwardsCompatibilityAttacks.pdf

Attacks and counter
measures

Buffer overflow/memory
corruption attacks

Stack canaries

More advanced buffer
overflows, defeating canary

Address Space Layout
Randomization (ASLR)

Note - several of these counter
measures does not work for

protection within the kernel

No-executable
(NX, W^X) stacks

Hijacking JIT compilers ROP attacks

Data Execution
Prevention (DEP)

?

Attacks and counter
measures

• Chaining of attacks - combining a number of exploits to
achieve goal

• finding and abusing a number of different
vulnerabilities might allow an attacker to achieve
goals not possible with just one potent exploit

• Code execution in gadgets (ROP) + sandbox escape +
elevation of privileges + execution of privileged code

A classic attack

• Ken Thompson’s trojanized
c compiler

• Modify the source code to the compiler
to recognize if it recompile itself or the
login program - insert backdoor in login

• recompile compiler

• remove source code changes and
recompile the compiler

• recompile the login program with the
modified compiler

• No visible signs for humans or tools to see
the backdoor in source code. Calls for
binary inspection or decompilation. Ken Thompson - TURING AWARD LECTURE: Reflections on Trusting Trust.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

Example of attacks

Remember that there is a number of
ways that all OS security controls can be

bypassed,
especially if the operating system

is not running
- a very good side-channel attack ;-)

Virtualization and isolation
sandboxes, containers, hypervisors, etc

Sandboxing

• Various types of OS supported or application supported sandboxing is good as a
way to get defense-in-depth

• Create temporary execution environments for certain tasks

• test of exe files to lure out malicious code execution

• perform certain tasks that is more prone to attacks

• perform certain tasks that is more sensitive

• Provide isolation, from other parts of system

Pro’s and con’s with virtualization

• Some sandbox and isolation technologies are not complete
virutalization or separation

• E.g. share name space (processes, file system, etc)

• Share operating system kernel

• Share drivers

Isolation, separation and virtualization
Type Example Description

chroot Change root for network service Classic Unix concept. No virtualization, just isolation

jails FreeBSD Jails Userland. Can run FreeBSD and Linux binaries.
Integrated into OS.

user mode linux, uml Userland. More lightweight and thus faster than virtual
machines

Containers Docker Userland. 3rd party tool on top of OS. Need container engine, not
hypervisor. More lightweight and thus faster than virtual machines

Virtual machines Xen, VMware vSphere, HyperV, Type 1 hypervisor based. Stronger isolation than
container

Virtual machines VMware Workstation, KVM Type 2 hypervisor based. Stronger isolation than
container

Hardware partitioning Sun LDOMs, IBM LPAR Best isolation and separation.
Hardware support gives superior performance and security

Overview of virtualization

Pro’s and con’s with
virtualization

• Isolation, and to have hardened and dedicated servers running specific services, are
standard ways to minimize attack surface. Virtualization tools can help this

• Its easy to believe that virtualization will automatically make things secure, and that
there is no way to jump between guest os’, but exploits have shown this not hold
true, e.g. cloudburst

http://www.immunityinc.com/documentation/cloudburst-vista.html

http://www.immunityinc.com/documentation/cloudburst-vista.html

Advanced attacks
Hardware attacks, etc

Attack tools

• Reverse Engineering Frameworks, such as Ghidra
help debugging, disassemble, reverse engineer
binaries

• Give attackers powerful tools to introspect
into applications, drivers, kernels

Example of attacks

• Attacks by attaching malicious hardware to buses and ports

• Using debug interfaces to snoop & manipulate bus

• JTAG (IEEE standard 1149.1-1990)

• SWD (Serial Wire Debug)

• Firewire and other DMA based methods to access memory of a computer (evil
maid attacks, evil devices)

• UEFI attacks via Thunderbolt (thunderstruck attack)

https://payatu.com/blog/hardware-attack-surface-jtag-swd/

Example of attacks
• Removal of, or direct attachment to, physical memory chips (cold boot attacks)

Example of attacks: cold boot attacks

F-secure ”The Chilling Reality of Cold Boot Attacks” https://www.youtube.com/watch?v=E6gzVVjW4yY

Example of attacks: PCILeech

Ulf Frisk - ”Attacking UEFI Runtime Services and Linux” https://www.youtube.com/watch?v=PiUVRHYTDUg

Example of attacks: HW implants

https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/

Advanced attacks
• Rowhammer*

• Flipping bits without accessing them

• Method of reading writing memory cells so that memory cells
in adjacent rows become changed

• Based on an unintended side effect in dynamic random-access
memory (DRAM) that causes memory cells to leak their
charges and interact electrically between themselves, possibly
altering the contents of nearby memory rows that were
not addressed in the original memory access

“Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors”
— Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, Onur Mutlu, at CMU

Advanced attacks

• Rowhammer*

• This circumvention of the isolation between DRAM memory
cells

• Memory leak == information leak

• Have been used to Gain Kernel Privileges, e.g. DRAMMER attack
on Android

• Can be used to attack Virtual Machines

* Kim et al ” Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors” https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

Advanced attacks

• Rowhammer

• Have been implemented in JavaScript and runned in a browser

• Modern variants* have been used to defeat ECC memory

* ”Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks” https://cs.vu.nl/~lcr220/ecc/ecc-rh-paper-eccploit-press-preprint.pdf

Advanced attacks

• Rowhammer*

• Initial research published 2014, but variants have been developed later

• Hardware solutions to protect against it have been circumvented

• Blacksmith

• Half-double

https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html

https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html https://comsec.ethz.ch/wp-content/files/blacksmith_sp22.pdf

Advanced attacks

• Meltdown* & Spectre**

• Low-level cache attacks, allow malicious READ’s

• Meltdown breaks isolation between user land and kernel

• Spectre breaks isolation between applications in user land

https://meltdownattack.com/

* Lipp et al ”Meltdown: Reading Kernel Memory from User Space” https://meltdownattack.com/meltdown.pdf

** Kocker et al ”Spectre Attacks: Exploiting Speculative Execution” https://spectreattack.com/spectre.pdf

https://meltdownattack.com/meltdown.pdf

Advanced attacks

• Meltdown & Spectre

• work on personal computers, mobile devices, and in the cloud

• Works on Windows, Linux, Android, etc

• Works on containers: docker, LXC, OpenVZ etc

Advanced attacks

• Spectre class vulnerabilities will remain unfixed because
otherwise CPU designers will have to disable speculative
execution which will entail a massive performance loss

Advanced attacks

• Meltdown & Spectre

• All modern CPUs are vulnerable (x86, AMD, ARM) in various degrees

* Canello et al ”A Systematic Evaluation of Transient Execution Attacks and Defenses” 
 https://arxiv.org/pdf/1811.05441.pdf

Advanced attacks

* Canello et al ”A Systematic Evaluation of Transient Execution Attacks and Defenses” https://arxiv.org/pdf/1811.05441.pdf

Advanced attacks

https://en.wikipedia.org/wiki/Transient_execution_CPU_vulnerability

https://en.wikipedia.org/wiki/Transient_execution_CPU_vulnerability

Advanced attacks

• Attacks against Intel Management Engine

• Proprietary and non-documented

• Own OS (Minix!)

• Reverse engineered and analysed by attackers

• Found multiple vulnerabilities in Skylake & Kabylake
architecture

Examples of modern security controls

Windows Defender security features in Win 10, Win 11

Windows

• Application Guard, WDAG

• App & browser control

• Isolation browsing

• Windows Device Guard, now
called Windows Defender
Application Control

https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows

• Windows Device Guard, And Applocker, now called Windows
Defender Application Control

• Attributes of the codesigning certificate(s) used to sign an app and
its binaries

• Attributes of the app's binaries that come from the signed
metadata for the files, such as Original Filename and version, or
the hash of the file

• The path from which the app or file is launched

https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows

• Core isolation with Memory integrity, aka Hypervisor-protected Code Integrity (HVCI)

• make it difficult for malicious programs to use low-level drivers to hijack your
computer

https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows
• Windows Defender Exploit Guard, WDEG

• Attack Surface Reduction (ASR): A set of controls that enterprises can enable to
prevent malware from getting on the machine by blocking Office-, script-, and email-based
threats

• Network protection: Protects the endpoint against web-based threats by blocking any
outbound process on the device to untrusted hosts/IP through Windows Defender
SmartScreen

• Controlled folder access: Protects sensitive data from ransomware by blocking untrusted
processes from accessing your protected folders

• Exploit protection: A set of exploit mitigations (replacing EMET) that can be easily
configured to protect your system and applications

https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Windows
• Windows Credential Guard

• To protect Local Security Authority
Server Service (LSASS) by moving it
into LSAIso

• Build on top of

• Virtualization Based Security (VBS)

• Secure boot

• Trusted Platform Module (TPM)

• UEFI lock
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current

Windows

• Windows Remote Credential
Guard

• To protect against theft of
credentials sent to server side

• Others that have admin
access to the server

• Especially important on jump
hosts

https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-how-it-works https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current

Windows

https://docs.microsoft.com/en-us/windows/security/identity-protection/remote-credential-guard

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current

MacOSX

• GateKeeper

• Checks code signing

• XProtect

• Malware protection

Tools mentioned during the class

• Ghidra - Reverse Enginering Framework

• IDA pro - Disassembler

• Hexray - Decompiler

• Ollydbg, windbg - Other disassemblers

• Bindiff - Advanced tool from zynamics to compare
binaries, with call graphs etc. Not same as built-in
windows tool with same name.

Referenses used during the class

• https://www.commoncriteriaportal.org/

• https://www.cs.virginia.edu/~av6ds/papers/isca2021a.pdf

• https://www.cvedetails.com/top-50-products.php

• https://owasp.org/www-project-top-ten/

https://www.commoncriteriaportal.org/
https://www.cs.virginia.edu/~av6ds/papers/isca2021a.pdf
https://www.cvedetails.com/top-50-products.php
https://owasp.org/www-project-top-ten/

Referenses used during the class

• http://en.wikipedia.org/wiki/Source_lines_of_code

• https://sources.debian.org/stats/

• https://informationisbeautiful.net/visualizations/million-
lines-of-code/

•

http://en.wikipedia.org/wiki/Source_lines_of_code
https://sources.debian.org/stats/
https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://informationisbeautiful.net/visualizations/million-lines-of-code/

Referenses used during the class

• https://docs.microsoft.com/en-us/windows/security/identity-
protection/credential-guard/credential-guard-how-it-works

• https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-
windows-defender-application-guard

• https://docs.microsoft.com/en-us/windows/security/threat-protection/
microsoft-defender-application-guard/md-app-guard-overview

• https://docs.microsoft.com/en-us/windows/security/identity-
protection/remote-credential-guard

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard
https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview

Referenses used during the class

• https://support.microsoft.com/en-us/windows/core-
isolation-e30ed737-17d8-42f3-a2a9-87521df09b78

• https://en.wikipedia.org/wiki/
Local_Security_Authority_Subsystem_Service

• http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.91.5728&rep=rep1&type=pdf

•

https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78
https://support.microsoft.com/en-us/windows/core-isolation-e30ed737-17d8-42f3-a2a9-87521df09b78
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

