Problem Set for Tutorial 3 — TDDD14/TDDD85

1 DFA Minimization

Figure 1: M_1

Figure 2: M_2 .

Exercise 1.

- 1. Minimize the DFA in Figure 1.
- 2. Minimize the DFA in Figure 2.

Solutions

Figure 3: The DFA from Figure 1 minimized.

Figure 4: A DFA from Figure 2 minimized.

Solution to Exercise 1.

- 1. A minimal DFA is given in Figure 3.
- 2. A minimal DFA is given in Figure 4.

2 Regular Expressions

Exercise 2. Let $r = (1 + 00^*11)(0 + 1(0 + 10)^*11)^*$. Which of the following strings belong to L(r)?

- 1. 010001,
- 2. 00111011,
- 3. 1100110,
- 4. 101100,
- 5. 10011001.

Exercise 3. Give regular expressions for the following languages over the alphabet $\{0,1\}$.

- 1. The set of all strings ending in 00.
- 2. The set of all strings in which the substring 00 occurs at most once.

Exercise 4. Construct an NFA_{ε} which accepts the language defined by the regular expression $10 + (0 + 11)0^*1$.

Exercise 5. Show that the equalities below hold for regular expressions. $(r, s \text{ and } t \text{ denote arbitrary regular expressions over some alphabet.)$

- 1. r + t = t + r,
- $2. \ r(s+t) = rs + rt,$
- 3. $(r + \epsilon)^* = r^*$,
- 4. $r\emptyset = \emptyset r = \emptyset$,
- 5. $\emptyset^* = \epsilon$.

Exercise 6. Give regular expressions that define

- 1. the language accepted by the DFA in Figure 5.
- 2. the language accepted by the DFA in Figure 6.

Figure 5: M_3

Figure 6: M_4

Solutions

Solution to Exercise 2.

1. 010001: no.

2. 00111011: yes.

3. 1100110: yes.

4. 101100: no.

5. 10011001: no.

Hint: no particular method is required here. Work systematically and use the fact that any string matched by the regular expression needs to consist of two substrings, one matching (1 + 00*11), and one matching (0 + 1(0 + 10)*11) zero or more times.

Solution to Exercise 3.

- 1. (0+1)*00,
- 2. $(1+01)^*(\epsilon+0+00)(1+10)^*$.

Solution to Exercise 4. By decomposing the regular expression syntactically according to the recursive definition of regular expressions, an NFA $_{\varepsilon}$ can be constructed systematically in a bottom-up fashion by successively joining NFA $_{\varepsilon}$ s corresponding to subexpressions according to the regular operator (*, concatenation, +) in question. For details, consult the corresponding lecture manuscript. The resulting NFA $_{\varepsilon}$ is shown in Figure 7.

Solution to Exercise 5. For each pair of regular expressions x and y we need to verify that L(x) = L(y). We provide detailed solutions to the first two exercises since the last three uses the same method.

- 1. r+t=t+r: $L(r+t)=L(r)\cup L(t)=L(t)\cup L(s)$ (the last equality follows from the fact that union is commutative, i.e., the order of the sets do not matter).
- 2. r(s+t) = rs + rt: $L(r(s+t)) = L(r)L(s+t) = L(r)(L(s) \cup L(t)) = L(r)L(s) \cup L(r) = L(r)L(s) \cup L(r)L(s) \cup L(r) = L(r)L(s) \cup L(r)L(s) \cup L(r)L(s) = L(r)L(s) \cup L(r)L(s) \cup L(r)L(s) = L(r)L(s) \cup L(r)L(s) \cup L(r)L(s) \cup L(r)L(s) \cup L(r)L(s) = L(r)L(s) \cup L(r)L(s) \cup$

Figure 7: M_5

L(r)L(t) = L(rs)L(rt) (here we use the fact that set concatenation distributes over union, i.e., for any sets A, B, C we have that $A(B \cup C) = AB \cup AC$).

Solution to Exercise 6. When presenting these solutions and simplifying a regular expression s to an equivalent regular expression t (i.e., L(s) = L(t)) we for simplicity write s = t rather than L(s) = L(t).

1. (a) Redraw and add a new start and final state to the GNFA.

The state elimination steps are performed as follows.

(b) Eliminate state 1. There are four paths through state 1:

- $S_1 \to 1 \to 2 : \varepsilon \emptyset^* 0 + \emptyset = 0$
- $S_1 \rightarrow 1 \rightarrow 3 : \varepsilon \emptyset^* 1 + \emptyset = 1$
- $2 \to 1 \to 2:00^*0 + \emptyset = 00$
- $2 \to 1 \to 3:00^*1+1=01$

The GNFA now looks as follows.

- (c) Eliminate state 3. There are four paths through state 3:
 - $S_1 \to 3 \to 2: 10^*(0+1) + 0 = 1(0+1) + 0$
 - $S_1 \rightarrow 3 \rightarrow S_f : 10^* \varepsilon + \emptyset = 1$
 - $2 \to 3 \to 2 : (01+1)\emptyset^*(0+1) + 00 = (01+1)(0+1) + 00$
 - $2 \to 3 \to S_f : (01+1)\emptyset^* \varepsilon + \varepsilon = 01+1+\varepsilon^a$.

The GNFA now looks as follows.

- (d) Eliminate state 2. There is one path from state S to state Sf:
 - $S_1 \to 2 \to Sf : (1(0+1)+0)((01+1)(0+1)+00)^*(01+1+\varepsilon)+1.$

start
$$\longrightarrow S_1$$
 $(1(0+1)+0)((01+1)(0+1)+00)^*(01+1+\varepsilon)+1$ S_f

This regular expression describes the language of the original DFA.

2. Redraw and add a new start and final state to the GNFA.

The state elimination steps are performed as follows.

3. Eliminate state q_3 . There are four paths through state q_3 :

•
$$q_1 \to q_3 \to q_1 : 00^*0 + 0 = 00$$

•
$$q_1 \rightarrow q_3 \rightarrow q_2 : 00^*1 + 1 = 01 + 1$$

•
$$q_2 \to q_3 \to q_1 : 0 \emptyset * 0 + 0 + 1 = 00 + 1$$

•
$$q_2 \to q_3 \to q_2 : 00 * 1 + 0 = 01$$

The GNFA now looks as follows.

4. Eliminate state q_2 . There are two paths through state q_2 :

•
$$q_1 \rightarrow q_2 \rightarrow q_1 : (01+1)(01)^*(00+1) + 00$$

•
$$q_1 \to q_2 \to S_f : (01+1)(01)^* \varepsilon + \emptyset = (01+1)(01)^*$$

The GNFA now looks as follows.

$$(01+1)(01)^*(00+1)+00$$
start \longrightarrow G_1 G_1 G_2 G_3 G_4 G_4 G_5 G_7 G_7

5. Eliminate state q_1 . There is only one path.

•
$$S_1 \to q_1 \to Sf : \varepsilon((01+1)(01)^*(00+1)+00)^*(01+1)(01)^* + \emptyset = ((01+1)(01)^*(00+1)+00)^*(01+1)(01)^*$$

start
$$\longrightarrow$$
 $((01+1)(01)^*(00+1)+00)^*(01+1)(01)^*$ \longrightarrow S_f

This regular expression describes the language of the original DFA.

^aNote in particular that we in this case *cannot* simplify this to 01 + 1.

3 Advanced and Exam Like Exercises

Exercise 7. Let the languages L_1 and L_2 be defined as follows:

- L_1 is defined by the regular expression $(a+b)^*bba(a+b)^*$.
- L_2 is the language of strings over $\{a,b\}^*$ containing the string ab.

Give a regular expression R such that $L(R) = L_1 - L_2$, i.e, $L(R) = \{w \mid w \in L_1 \land w \notin L_2\}$. Explain your reasoning and why your solution is correct.

Exercise 8. Using a standard method, construct a regular expression defining the same language as the DFA whose transition function δ is given by

	a	b
$\rightarrow A$	A	C
B F	A	B
C F	B	A

Exercise 9. For each pair of regular expressions R_1 and R_2 below, answer whether they generate the same language $(L(R_1) = L(R_2))$. If no, give a string which belongs to one of the languages and does not belong to the other. If yes, show that they are equivalent, e.g., by (1) computing $L(R_1)$ and $L(R_2)$ as far as you can and (2) verifying that the two resulting sets are equal. For the last step, an informal explanation is sufficient.

- 1. $\varepsilon + \varepsilon$ and ε .
- 2. $\emptyset + \emptyset$ and \emptyset .
- 3. $a(b+c+\varepsilon)$ and ab+bc.
- 4. $(ab + a)^*a$ and $a(ba + a)^*$.

Solutions

Solution to Exercise 7. Hint: while it is possible to solve the problem by a systematic approach by constructing a DFA for $L_1 \cap \bar{L}_2$ and converting this DFA to a regular expression, it is *much* easier to construct the regular expression directly. Hence, how can you adapt the regular expression $(a + b)^*bba(a + b)^*$ so that it does not match ab?

Solution to Exercise 8.

1. Redraw and add a new start and final state to the GNFA.

The state elimination steps are performed as follows.

- 2. Eliminate state B. There are 2 paths through state B:
 - $C \rightarrow B \rightarrow A : ab^*a + b$
 - $C \to B \to S_f : ab^* \varepsilon + \varepsilon = ab^* + \varepsilon$

The GNFA now looks as follows.

- 3. Eliminate state A. There are two paths through state A:
 - $S_1 \to A \to C : \varepsilon a^*b + \emptyset = a^*b$
 - $C \rightarrow A \rightarrow C : (ab^*a + b)a^*b + \emptyset = (ab^*a + b)a^*b$

The GNFA now looks as follows.

- 4. Eliminate state C.
 - $S_1 \to C \to Sf: a^*b((ab^*a+b)a^*b)^*(ab^*+\varepsilon) + \emptyset = a^*b((ab^*a+b)a^*b)^*(ab^*+\varepsilon).$

We obtain the following GNFA.

start
$$\longrightarrow$$
 (S_1) $a^*b((ab^*a+b)a^*b)^*(ab^*+\varepsilon)$ \longrightarrow (S_f)

This regular expression describes the language of the original DFA.

Solution to Exercise 9.

- 1. $L(\varepsilon + \varepsilon) = L(\varepsilon) \cup L(\varepsilon) = \{\varepsilon\} \cup \{\varepsilon\} = \{\varepsilon\}$. Hence, they are the same.
- 2. $\emptyset + \emptyset$ and \emptyset : a similar argument to the above shows that they are the same.
- 3. $L(a(b+c+\varepsilon)) = L(a)L(b+c+\varepsilon) = \{a\}\{a,b,\varepsilon\} = \{aa,ab,a\}$ which is not the same as $L(ab+bc) = \{ab,bc\}$.
- 4. $L((ab+a)^*a) = \{ab, a\}^*\{a\}$, i.e., the set of strings starting with an arbitrary combination of ab and a and ending with a. For the other expression we see that $L(a(ba+a)^*) = \{a\}\{ba, a\}^*$, i.e., the set of strings starting with an a and ending with an arbitrary combination of ba or a. Since a concatenated with ba gives us the same as ab concatenated with a it is not hard to see that the two expressions describe the same language.