7 LR-Grammars

7.1 Consider the following CFG G (S is the start symbol):

$$
\begin{aligned}
& S \rightarrow A \$ \\
& A \rightarrow A B \mid B \\
& B \rightarrow(A) \mid()
\end{aligned}
$$

a) Construct an NFA_{ϵ} which shows the valid $\mathrm{LR}(0)$ items for each viable prefix. (You may choose to skip this step and go directly to b).
b) Construct an equivalent DFA (exclude the error state and all transitions to it).
c) Is G an $\operatorname{LR}(0)$ grammar?
7.2 Is the following CFG an $\operatorname{LR}(0)$ grammar? (S^{\prime} is the start symbol.)

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow b A \mid a B \\
& A \rightarrow a|a S| b A A \\
& B \rightarrow b|b S| a B B
\end{aligned}
$$

7.3 Show how the following strings are parsed by the LR(0) parser whose finite control is given by the DFA in exercise 7.1.b. For each step show the stack, the remaining input and whether the operation is "shift" or "reduce". For reduce operations show which productions are involved.
a) $(()()) \$$
b) ()$((())()) \$$
7.4 Is the following CFG an $\operatorname{LR}(0)$ grammar? (S is the start symbol.)

$$
\begin{aligned}
& S \rightarrow A \\
& A \rightarrow a A a|b A b| c
\end{aligned}
$$

7.5 Consider the following CFG G (S is the start symbol):

$$
\begin{aligned}
& S \rightarrow A \\
& A \rightarrow A B \mid \epsilon \\
& B \rightarrow b \mid a B
\end{aligned}
$$

a) Construct an NFA_{ϵ} showing the valid $\mathrm{LR}(1)$ items for each viable prefix. (You may choose to skip this step and construct a DFA instead).
b) Is G an $\operatorname{LR}(1)$ grammar?
7.6 Consider the following CFG G (S is the start symbol):

$$
\begin{aligned}
& S \rightarrow E \\
& E \rightarrow E+T \mid T \\
& T \rightarrow a \mid(E)
\end{aligned}
$$

a) Construct a DFA showing the valid $\mathrm{LR}(1)$ items for a viable prefix.
b) Show how the string $a+(a+a) \$$ is parsed by the $\operatorname{LR}(1)$ parser corresponding to the DFA in a) (\$ is used to denote 'end-of-input').
For each step show the stack, the remaining input, the kind of action ("shift" or "reduce") and the production used in "reduce".
7.1 a) The $\mathrm{NFA}_{\epsilon} M_{35}$ is shown in figure 35.

Figure 35: M_{35}
b) The DFA M_{36} is shown in figure 36 .

Figure 36: M_{36}
c) Yes, the grammar is $\operatorname{LR}(0)$.
7.2 If we construct a DFA which determines the set of valid $\mathrm{LR}(0)$ items for each viable prefix (see figure 37), then we will find that both $A \rightarrow a \bullet$ and $S \rightarrow \bullet b A$ are valid for the viable prefix $a b$, for instance. Since $A \rightarrow a \bullet$ is a complete item, and another item is valid for the same viable prefix, the grammar is not $\operatorname{LR}(0)$.

Figure 37: M_{37}

7.3 a) Stack

0
$0(5$
0(5) 5
$0(5(5) 7$
0 (5B4
0 (5A6
0(5A6(5
$0(5 A 6(5) 7$
$0(5 A 6 B 3$
0 (5A6
$0(5 A 6) 8$
$0 B 4$
0 A1
0 A1 $\$ 2$
$0 S$

Remaining input
(()())\$
()())\$
)())\$
())\$
())\$
())\$
))\$
)\$
)\$
)\$
\$
\$
\$
-
-

Comment

Start
Shift
Shift
Shift
Reduce by $B \rightarrow()$
Reduce by $A \rightarrow B$
Shift
Shift
Reduce by $B \rightarrow()$
Reduce by $A \rightarrow A B$
Shift
Reduce by $B \rightarrow(A)$
Reduce by $A \rightarrow B$
Shift
Reduce by $S \rightarrow A \$$ and accept
7.4 If a DFA is constructed as in exercise 7.1 (see M_{38} in figure 38), we will find that the grammar is $\operatorname{LR}(0)$.

Figure 38: M_{38}
7.5 a) See M_{39} in figure 39 (\$ denotes 'end-of-input').
b) If a DFA equivalent to the NFA_{ϵ} in a) is constructed (see figure 40), we will find that the grammar is $\operatorname{LR}(1)$.

Figure 39: M_{39}

$\xrightarrow{\text { start }}$| $S \rightarrow \bullet A\{\$\}$ |
| :---: |
| $A \rightarrow \bullet A\{\$\}$ |
| $A \rightarrow \bullet\{\$\}$ |
| $A \rightarrow A B\{a, b\}$ |
| $A \rightarrow \bullet\{a, b\}$ |
| I_{0} |

Figure 40: M_{40}
7.6 a) See figure 41.

Figure 41: M_{41}
b) Stack

A
$\mathrm{A} a \mathrm{E}$
ATF
AEB
$\mathrm{A} E \mathrm{~B}+\mathrm{C}$
$\mathrm{A} E \mathrm{~B}+\mathrm{C}(\mathrm{G}$
$\mathrm{A} E \mathrm{~B}+\mathrm{C}(\mathrm{G} a \mathrm{~K}$

Remaining Comment input

$\begin{array}{ll}a+(a+a) \$ & \text { Start } \\ +(a+a) \$ & \text { Shift } \\ +(a+a) \$ & \text { Reduce by } T \rightarrow a \\ +(a+a) \$ & \text { Reduce by } E \rightarrow T \\ (a+a) \$ & \text { Shift } \\ a+a) \$ & \text { Shift } \\ +a) \$ & \text { Shift }\end{array}$

$\mathrm{A} E \mathrm{~B}+\mathrm{C}(\mathrm{GTJ}$	$+a) \$$	Reduce by $T \rightarrow a$
$\mathrm{~A} E \mathrm{~B}+\mathrm{C}(\mathrm{G} E \mathrm{H}$	$+a) \$$	Reduce by $E \rightarrow T$
$\mathrm{~A} E \mathrm{~B}+\mathrm{C}(\mathrm{G} E \mathrm{H}+\mathrm{M}$	$a) \$$	Shift
$\mathrm{A} E \mathrm{~B}+\mathrm{C}(\mathrm{G} E \mathrm{H}+\mathrm{M} a \mathrm{~K}$	$) \$$	Shift
$\mathrm{A} E \mathrm{~B}+\mathrm{C}(\mathrm{G} E \mathrm{H}+\mathrm{M} T \mathrm{~N}$	$) \$$	Reduce by $T \rightarrow a$ Reduce by $\mathrm{A} E \mathrm{~B}+\mathrm{C}(\mathrm{G} E \mathrm{H}$
$\mathrm{A} E \mathrm{~B}+\mathrm{C}(\mathrm{G} E \mathrm{H}) \mathrm{I}$	$) \$$	$E \rightarrow E+T$
$\mathrm{~A} E \mathrm{~B}+\mathrm{C} T \mathrm{D}$	$\$$	Shift
$\mathrm{A} E \mathrm{~B}$	$\$$	Reduce by $T \rightarrow(E)$ $\mathrm{A} S$
	$\$$	Reduce by $E \rightarrow E+T$ Reduce by $S \rightarrow E$ and accept

An $L R(1)$ parser can be described by a decision table. For an input symbol and a DFA state from the stack, the table gives the parser's action. The decision table corresponding to the DFA above is shown in table 8.

$\begin{gathered} \hline \hline \text { Stack } \\ \text { top } \\ \hline \end{gathered}$	Next input symbol				
	a	+	()	\$
A	Shift		Shift		
B		Shift			Reduce by $S \rightarrow E$ and accept
C	Shift		Shift		
D		$\begin{aligned} & \text { Reduce by } \\ & E \rightarrow E+T \end{aligned}$			$\begin{aligned} & \text { Reduce by } \\ & E \rightarrow E+T \end{aligned}$
E		$\begin{aligned} & \text { Reduce } \quad \text { by } \\ & T \rightarrow a \end{aligned}$			$\begin{array}{ll} \hline \text { Reduce } & \text { by } \\ T \rightarrow a & \end{array}$
F		$\begin{array}{ll} \hline \text { Reduce } & \text { by } \\ E \rightarrow T & \end{array}$			$\begin{array}{ll} \hline \text { Reduce } & \text { by } \\ E \rightarrow T & \end{array}$
G	Shift		Shift		
H		Shift		Shift	
1		$\begin{array}{ll} \hline \text { Reduce } & \text { by } \\ T \rightarrow(E) \end{array}$			$\begin{array}{ll} \hline \text { Reduce } & \text { by } \\ T \rightarrow(E) \end{array}$
J		$\begin{array}{ll} \text { Reduce } & \text { by } \\ E \rightarrow T & \end{array}$		$\begin{array}{ll} \hline \text { Reduce } & \text { by } \\ E \rightarrow T & \end{array}$	
K		$\begin{array}{ll} \hline \text { Reduce } & \text { by } \\ T \rightarrow a & \end{array}$		$\begin{array}{ll} \hline \text { Reduce } & \text { by } \\ T \rightarrow a & \end{array}$	
L	Shift		Shift		
M	Shift		Shift		
N		$\begin{aligned} & \text { Reduce by } \\ & E \rightarrow E+T \end{aligned}$		$\begin{aligned} & \text { Reduce by } \\ & E \rightarrow E+T \end{aligned}$	
0		Shift		Shift	
P		$\begin{array}{ll} \hline \text { Reduce } & \text { by } \\ T \rightarrow(E) & \\ \hline \end{array}$		$\begin{array}{ll} \hline \text { Reduce } & \text { by } \\ T \rightarrow(E) & \\ \hline \end{array}$	

Table 8: Decision table

