6 Regular Grammars, PDA's, and Properties of CFL's

6.1 Find CFG's for the following regular expressions:

- a) $00(1+0)^*1$
- b) 101(101)*010(010)*
- c) $(11+010)^*11(00+11)^*$
- 6.2 For each of the following CFG's, give an NFA_{ϵ} accepting the language in question. (S is the start symbol in all cases.)
 - a) $S \to 0S \mid 1A \mid \epsilon$ $A \to 1A \mid \epsilon$
 - b) $S \to 01S \mid 00$
 - c) $S \rightarrow 10A \mid 00A$ $A \rightarrow 10A \mid 01B \mid 11$ $B \rightarrow 01B \mid 11$
- **6.3** A context free grammar $G = (N, \Sigma, P, S)$ is called *right-linear* if all its productions are of the form

$$A \to wB$$
 or $A \to w$,

where $w \in \Sigma^*$ and $A, B \in N$. A *left-linear* grammar is defined analogically. A grammar is *regular* if it is right- or left-linear.

Find a regular CFG which generates the language that is accepted by

a) the NFA in figure 13,

Figure 13: M_{13}

b) the NFA in figure 14.

6.4 Consider the following PDA M, where

```
States: \{q_0, q_1, q_2\}
Input alphabet: \{a, b\}
Stack alphabet: \{a, \bot\}
Initial state: q_0
Initial stack symbol: \bot
Final states: \{q_2\}
```

and the transition relation is

Figure 14: M_{14}

$$\delta = \{ ((q_0, a, \bot), (q_0, a\bot)), \\ ((q_0, a, a), (q_0, aa)), \\ ((q_0, b, a), (q_1, \epsilon)), \\ ((q_1, b, a), (q_1, \epsilon)), \\ ((q_1, \epsilon, \bot), (q_2, \epsilon)) \}$$

Find the configurations that describe the actions of the automaton when the following strings are used as input. For each string, also state whether M accepts it by 1) final state and 2) empty stack.

- a) aa
- b) aabba
- c) aaabbb

Is M a deterministic pushdown automaton? In other words, is its next configuration relation a (partial) function?

6.5 Let M be a PDA where

States: $\{q_0, q_1, q_2\}$ Input alphabet: $\{a, b, c, (,), +, -, \cdot, /\}$ Stack alphabet: $\{a, b, c, (,), +, -, \cdot, /, E, F, T, \bot\}$ Initial state: q_0 Initial stack symbol: \bot Final states: $\{q_2\}$

and the transition relation δ consists of the following transitions

$((q_0, \epsilon, \perp), (q_1, E \perp))$	$((q_1, a, a), (q_1, \epsilon))$
$((q_1, \epsilon, E), (q_1, T))$	$((q_1, b, b), (q_1, \epsilon))$
$((q_1, \epsilon, E), (q_1, E + T))$	$((q_1, c, c), (q_1, \epsilon))$
$((q_1, \epsilon, E), (q_1, E - T))$	$((q_1, (, (), (q_1, \epsilon))$
$((q_1, \epsilon, T), (q_1, F))$	$((q_1,),)),(q_1,\epsilon))$
$((q_1, \epsilon, T), (q_1, T \cdot F))$	$((q_1, +, +), (q_1, \epsilon))$
$((q_1, \epsilon, T), (q_1, T/F))$	$((q_1, -, -), (q_1, \epsilon))$
$((q_1, \epsilon, F), (q_1, a))$	$((q_1,\cdot,\cdot),(q_1,\epsilon))$
$((q_1, \epsilon, F), (q_1, b))$	$((q_1,/,/),(q_1,\epsilon))$
$((q_1, \epsilon, F), (q_1, c))$	$((q_1,\epsilon,\perp),(q_2,\epsilon))$
$((q_1, \epsilon, F), (q_1, (E)))$	

Is M a deterministic pushdown automaton? Find the configurations ([Hopcroft &Ullman] call them "instantaneous descriptions") that describe the actions of the automaton when the following strings are used as input. For each string, also state whether it belongs to L(M).

- a) a ⋅ b + c
 b) a + a − b ⋅ (a/b + b/c)
- **6.6** Construct a DPDA (a PDA which is deterministic, conf. the explanation in 6.4) accepting the language $\{a^i b^j \mid 0 \le i < j\}$.
- 6.7 For each of the following CFG's, construct a PDA which accepts the language generated by the CFG in question. (S is the start symbol, as usual.)
 - a) $S \to aAA$ $A \to aS \mid bS \mid a$
 - b) $S \rightarrow aA \mid aBB$ $A \rightarrow Ba \mid Sb$ $B \rightarrow bAS \mid \epsilon$
- 6.8 Show that the following languages are not context-free.
 - a) $L_1 = \{ a^j b^k a^l \mid 0 < j < k < l \}$
 - b) $L_2 = \{ w \in \{a, b, c\}^* \mid w \text{ has an equal number of } a$'s, b's and c's $\}$
 - c) $L_3 = \{ ww \mid w \in \{a, b\}^* \}$

- - b) $S \rightarrow 101A010B$ $A \rightarrow \epsilon \mid 101A$ $B \rightarrow \epsilon \mid 010B$
 - c) $S \rightarrow A11B$ $A \rightarrow \epsilon \mid 11A \mid 010A$ $B \rightarrow \epsilon \mid 00B \mid 11B$
- **6.2** a) NFA_{ϵ} M_{32} in figure 32.

Figure 32: M_{32}

b) NFA_{ϵ} M_{33} in figure 33.

Figure 33: M_{33}

- c) NFA_{ϵ} M_{34} in figure 34.
- 6.3 a) The principle: a nonterminal X generates a terminal string w iff w moves the automaton from state X to a final state.In the grammar below, A is the start symbol.
 - $\begin{array}{l} A \rightarrow 0B \\ B \rightarrow 1C \mid 1 \\ C \rightarrow 0B \end{array}$

38

Figure 34: M_{34}

- b) A is the start symbol
 - $\begin{array}{l} A \rightarrow aB \mid bC \\ B \rightarrow aD \mid a \mid bB \\ C \rightarrow aD \mid a \mid bC \\ D \rightarrow bE \mid b \\ E \rightarrow aE \mid a \end{array}$
- **6.6** Our automaton is $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, \bot\}, \delta, q_0, \bot, \{q_2\})$, where δ is defined below. It accepts $\{a^i b^j \mid 0 \le i < j\}$ by final state. The role of the states is described by

state	consumed input	stack		
q_0	a^i .	$a^i \bot$	where $i \ge 0$	
q_1	$a^i b^j$	$a^{i-j} \bot$	where $i \ge j > 0$	
q_2	$a^i b^i b^k$	\perp	where $i \ge 0, k > 0$	
$\delta = \{$	$((q_0, a, ot), (q_0, a, ot)), (q_0, a, ot), (q_2, ot)), (q_2, ot), (q_0, a, a), (q_0, a, a), (q_0, a, a), (q_0, a, a), (q_0, b, a), (q_1, \epsilon))$	L)), (()), (()), (($\{(q_1, b, a), (q_1, \epsilon)), \\ (q_1, b, \bot), (q_2, \bot)), \\ (q_2, b, \bot), (q_2, \bot)), \\ \}$	•

6.7 The idea is to use the stack to simulate a leftmost derivation of the grammar. If the PDA has read w from the input, the stack contains $\gamma \perp$ and the state is q_1 then $S \Rightarrow^* w\gamma$.

a)
$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, S, A, \bot\}, \delta, q_0, \bot, \{q_2\}),$$
 where

$$\delta = \{ ((q_0, \epsilon, \bot), (q_1, S \bot)), ((q_1, \epsilon, S), (q_1, aAA), ((q_1, \epsilon, A), (q_1, aS)), ((q_1, \epsilon, A), (q_1, bS)), ((q_1, \epsilon, A), (q_1, a)), ((q_1, a, a), (q_1, \epsilon)), ((q_1, b, b), (q_1, \epsilon)), ((q_1, \epsilon, \bot), (q_2, \epsilon)) \}.$$
b) $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, S, A, B, \bot\}, \delta, q_0, \bot, \{q_2\}),$ where

$$\delta = \{ ((q_0, q_1, q_2), \{a, b\}, \{a, b, S, A, B, \bot\}, \delta, q_0, \bot, \{q_2\}),$$
 where

$$\delta = \{ ((q_0, \epsilon, \bot), (q_1, S \bot), ((q_1, a, a), (q_1, \epsilon)), \\ ((q_1, \epsilon, S), (q_1, aA)), ((q_1, b, b), (q_1, \epsilon)), \\ ((q_1, \epsilon, S), (q_1, aBB)), ((q_1, \epsilon, \bot), (q_2, \epsilon)), \\ ((q_1, \epsilon, A), (q_1, Ba)), \\ ((q_1, \epsilon, B), (q_1, bAS)), \\ ((q_1, \epsilon, B), (q_1, \epsilon)) \}$$

Both automata accept by final state.

6.8 a) Assume that L_1 is context-free. Then the pumping lemma holds. According to the lemma, there exists a number n such that if a string z, not shorter than n, is in L_1 (i.e. $|z| \ge n, z \in L_1$) then z can be split into five strings u, v, w, x, y:

$$z = uvwxy$$

such that

40

 $|vx| \ge 1,$ $|vwx| \le n,$ $uv^i wx^i y \in L_1$ for all $i \ge 0$

We show that this leads to a contradiction. Take

$$z = a^n b^{n+1} a^{n+2} \in L_1.$$

Then there exist strings u, v, w, x, y satisfying the conditions above. We have two possibilities:

1. vwx does not overlap with the initial a^n . In other words, $u = a^n u'$ (for some u'). Take i = 0. Then $uv^0 wx^0 y = uwy = a^n b^k a^l$, for some k and *l*. The string $a^n b^k a^l$ is shorter than $a^n b^{n+1} a^{n+2}$ (as $|vx| \ge 1$), hence k < n + 1 or l < n + 2 (or both). In both cases n < k < l is impossible, so $uwy \notin L_1$ and we have a contradiction.

2. Otherwise vwx overlaps with the initial a^n . So it does not overlap with the final a^{n+2} , as $|vwx| \leq n$. In other words $y = y'a^{n+2}$, for some y'. Take i = 2. If uv^2wx^2y is not of the form $a^jb^ka^l$ then $uv^2wx^2y \notin L_1$, contradiction. If $uv^2wx^2y = a^jb^ka^l$ then l = n+2 but j > n or k > n+1 (as $|vx| \geq 1$). Thus j < k < l does not hold and $uv^2wx^2y \notin L_1$. Contradiction.

This completes the proof. As usually in proofs with pumping lemmas, choosing an appropriate string z was crucial. For instance, if $z = ab^n a^{2n}$ then we may take $v = w = \epsilon$, x = a, $u = ab^n$ and and we do not obtain contradiction.

b) We know (cf. the book) that the language $M = \{a^i b^i c^i \mid i \geq 0\}$ is not context-free. Notice that $L_2 \cap a^* b^* c^* = M$. Remember that the intersection of a context-free language with a regular language is context-free. So if L_2 were context-free then M would also be context-free. The latter is not true, so L_2 is not context-free.

(A proof using the pumping lemma is also possible; take for instance $z = a^n b^n c^n$).

c) To show that L_3 is not a context-free language, we show that the pumping lemma does not hold for L_3 . To do this, for every number n we have to find a string $z \in L_3$, $|z| \ge n$ such that for every splitting of z into five pieces

z = uvwxy, where $|vx| \ge 1$ and $|vwx| \le n$

some of the strings $uv^i wx^i y$ (i = 0, 1, ...) are not in L_3 . Let us try with

 $z = a^n b^n a^n b^n \in L.$

Consider an arbitrary splitting as above. If |vx| is odd then uv^0wx^0y has an odd length and thus is not in L_3 . So it remains to consider the case of |vx| being even. Notice that $3n \leq |uv^0wx^0y| \leq 4n - 1$. We have three possibilities:

- 1. vwx is contained in the first half of z (so $y = y'a^nb^n$, for some y'). Then the last symbol of the first half of uv^0wx^0y is a (we removed some symbols from the first half of z and "the middle moved to the right"). Thus uv^0wx^0y is not in L_3 (as the last symbol of its second half is b).
- 2. vwx is contained in both halves of z. So it begins with a b and ends with an a. Thus v contains (at least one) b or x contains (at least one) a. Thus the first half of uv^0wx^0y has fewer b's than the second one¹ or the second half of uv^0wx^0y has fewer a's than the first one. Hence uv^0wx^0y is not in L_3 .
- 3. vwx is contained in the second half of z (so $u = a^n b^n u'$, for some u'). This case is symmetric to case 1. The first symbol of the second half of uv^0wx^0y is b and $uv^0wx^0y \notin L_3$.

¹As the halves of uv^0wx^0y are not shorter than 1.5*n*, the first half begins with a^n and the second half ends with b^n .

Notice that in our proof we could not choose, for instance, $z = a^n b a^n b$. (Then there exists a splitting z = uvwxy satisfying the conditions of the pumping lemma such that $uv^i wx^i y \in L_3$ for all $i \ge 0$).

For another proofs that L_3 is not context-free, see [Kozen, p. 154] and [Hopcroft&Ullman, p. 136].