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6 Regular Grammars, PDA’s, and Properties of

CFL’s

6.1 Find CFG’s for the following regular expressions:

a) 00(1 + 0)∗1

b) 101(101)∗010(010)∗

c) (11 + 010)∗11(00 + 11)∗

6.2 For each of the following CFG’s, give an NFAǫ accepting the language in question.
(S is the start symbol in all cases.)

a) S → 0S | 1A | ǫ
A → 1A | ǫ

b) S → 01S | 00

c) S → 10A | 00A
A → 10A | 01B | 11
B → 01B | 11

6.3 A context free grammar G = (N, Σ, P, S) is called right-linear if all its productions
are of the form

A → wB or A → w,

where w ∈ Σ∗ and A, B ∈ N . A left-linear grammar is defined analogically. A
grammar is regular if it is right- or left-linear.

Find a regular CFG which generates the language that is accepted by

a) the NFA in figure 13,

start
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0

Figure 13: M13

b) the NFA in figure 14.

6.4 Consider the following PDA M , where

States: {q0, q1, q2}

Input alphabet: {a, b}

Stack alphabet: {a,⊥}

Initial state: q0

Initial stack symbol: ⊥

Final states: {q2}

and the transition relation is
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Figure 14: M14

δ = { ((q0, a,⊥), (q0, a⊥)),
((q0, a, a), (q0, aa)),
((q0, b, a), (q1, ǫ)),
((q1, b, a), (q1, ǫ)),
((q1, ǫ,⊥), (q2, ǫ)) }

Find the configurations that describe the actions of the automaton when the
following strings are used as input. For each string, also state whether M accepts
it by 1) final state and 2) empty stack.

a) aa

b) aabba

c) aaabbb

Is M a deterministic pushdown automaton? In other words, is its next configu-
ration relation a (partial) function?

6.5 Let M be a PDA where

States: {q0, q1, q2}

Input alphabet: {a, b, c, (, ), +,−, ·, /}

Stack alphabet: {a, b, c, (, ), +,−, ·, /, E, F, T,⊥}

Initial state: q0

Initial stack symbol: ⊥

Final states: {q2}

and the transition relation δ consists of the following transitions
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((q0, ǫ,⊥), (q1, E⊥)) ((q1, a, a), (q1, ǫ))
((q1, ǫ, E), (q1, T )) ((q1, b, b), (q1, ǫ))
((q1, ǫ, E), (q1, E + T )) ((q1, c, c), (q1, ǫ))
((q1, ǫ, E), (q1, E − T )) ((q1, (, ( ), (q1, ǫ))
((q1, ǫ, T ), (q1, F )) ((q1, ), ) ), (q1, ǫ))
((q1, ǫ, T ), (q1, T · F )) ((q1, +, +), (q1, ǫ))
((q1, ǫ, T ), (q1, T/F )) ((q1,−,−), (q1, ǫ))
((q1, ǫ, F ), (q1, a)) ((q1, ·, ·), (q1, ǫ))
((q1, ǫ, F ), (q1, b)) ((q1, /, /), (q1, ǫ))
((q1, ǫ, F ), (q1, c)) ((q1, ǫ,⊥), (q2, ǫ))
((q1, ǫ, F ), (q1, (E)))

Is M a deterministic pushdown automaton? Find the configurations ([Hopcroft
&Ullman] call them “instantaneous descriptions”) that describe the actions of
the automaton when the following strings are used as input. For each string, also
state whether it belongs to L(M).

a) a · b + c

b) a + a − b · (a/b + b/c)

6.6 Construct a DPDA (a PDA which is deterministic, conf. the explanation in 6.4)
accepting the language {aibj | 0 ≤ i < j}.

6.7 For each of the following CFG’s, construct a PDA which accepts the language
generated by the CFG in question. (S is the start symbol, as usual.)

a) S → aAA
A → aS | bS | a

b) S → aA | aBB
A → Ba | Sb
B → bAS | ǫ

6.8 Show that the following languages are not context-free.

a) L1 = { ajbkal | 0 < j < k < l }

b) L2 = {w ∈ {a, b, c}∗ | w has an equal number of a’s, b’s and c’s }

c) L3 = {ww | w ∈ {a, b}∗ }
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6.1 a) S → 00A1
A → ǫ | 0A | 1A

b) S → 101A010B
A → ǫ | 101A
B → ǫ | 010B

c) S → A11B
A → ǫ | 11A | 010A
B → ǫ | 00B | 11B

6.2 a) NFAǫ M32 in figure 32.
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Figure 32: M32

b) NFAǫ M33 in figure 33.
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Figure 33: M33

c) NFAǫ M34 in figure 34.

6.3 a) The principle: a nonterminal X generates a terminal string w iff w moves
the automaton from state X to a final state.

In the grammar below, A is the start symbol.

A → 0B
B → 1C | 1
C → 0B



Suggested Solutions: Regular Grammars, PDA’s, and Properties of CFL’s 39

start
[S]

[00A]

[10A]

[0A] [A]

[01B] [1B]

[B]

[11]

[1]

[ǫ]

ǫ

ǫ 1

0 0

ǫ
ǫ

ǫ

0

1
ǫ

ǫ

1

1

Figure 34: M34

b) A is the start symbol

A → aB | bC
B → aD | a | bB
C → aD | a | bC
D → bE | b
E → aE | a

6.6 Our automaton is M = ({q0, q1, q2}, {a, b}, {a,⊥}, δ, q0,⊥, {q2}), where δ is de-
fined below. It accepts {aibj | 0 ≤ i < j} by final state. The role of the states is
described by

state consumed input stack

q0 ai ai⊥ where i ≥ 0
q1 aibj ai−j⊥ where i ≥ j > 0
q2 aibibk ⊥ where i ≥ 0, k > 0

δ = { ((q0, a,⊥), (q0, a⊥)), ((q1, b, a), (q1, ǫ)),
((q0, b,⊥), (q2,⊥)), ((q1, b,⊥), (q2,⊥)),
((q0, a, a), (q0, aa)), ((q2, b,⊥), (q2,⊥)),
((q0, b, a), (q1, ǫ)) }
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6.7 The idea is to use the stack to simulate a leftmost derivation of the grammar. If
the PDA has read w from the input, the stack contains γ⊥ and the state is q1

then S ⇒∗ wγ.

a) M = ({q0, q1, q2}, {a, b}, {a, b, S, A,⊥}, δ, q0,⊥, {q2}), where

δ = { ((q0, ǫ,⊥), (q1, S⊥)),
((q1, ǫ, S), (q1, aAA),
((q1, ǫ, A), (q1, aS)),
((q1, ǫ, A), (q1, bS)),
((q1, ǫ, A), (q1, a)),
((q1, a, a), (q1, ǫ)),
((q1, b, b), (q1, ǫ)),
((q1, ǫ,⊥), (q2, ǫ)) }.

b) M = ({q0, q1, q2}, {a, b}, {a, b, S, A, B,⊥}, δ, q0,⊥, {q2}), where

δ = { ((q0, ǫ,⊥), (q1, S⊥), ((q1, a, a), (q1, ǫ)),
((q1, ǫ, S), (q1, aA)), ((q1, b, b), (q1, ǫ)),
((q1, ǫ, S), (q1, aBB)), ((q1, ǫ,⊥), (q2, ǫ)),
((q1, ǫ, A), (q1, Ba)),
((q1, ǫ, A), (q1, Sb)),
((q1, ǫ, B), (q1, bAS)),
((q1, ǫ, B), (q1, ǫ)) }

Both automata accept by final state.

6.8 a) Assume that L1 is context-free. Then the pumping lemma holds. According
to the lemma, there exists a number n such that if a string z, not shorter
than n, is in L1 (i.e. |z| ≥ n, z ∈ L1) then z can be split into five strings
u, v, w, x, y:

z = uvwxy

such that

|vx| ≥ 1, |vwx| ≤ n, uviwxiy ∈ L1 for all i ≥ 0

We show that this leads to a contradiction. Take

z = anbn+1an+2 ∈ L1.

Then there exist strings u, v, w, x, y satisfying the conditions above. We have
two possibilities:

1. vwx does not overlap with the initial an. In other words, u = anu′ (for
some u′). Take i = 0. Then uv0wx0y = uwy = anbkal, for some k and
l. The string anbkal is shorter than anbn+1an+2 (as |vx| ≥ 1), hence
k < n + 1 or l < n + 2 (or both). In both cases n < k < l is impossibe,
so uwy 6∈ L1 and we have a contradiction.



Suggested Solutions: Regular Grammars, PDA’s, and Properties of CFL’s 41

2. Otherwise vwx overlaps with the initial an. So it does not overlap with
the final an+2, as |vwx| ≤ n. In other words y = y′an+2, for some y′.
Take i = 2. If uv2wx2y is not of the form ajbkal then uv2wx2y 6∈ L1,
contradiction. If uv2wx2y = ajbkal then l = n+2 but j > n or k > n+1
(as |vx| ≥ 1). Thus j < k < l does not hold and uv2wx2y 6∈ L1.
Contradiction.

This completes the proof. As usually in proofs with pumping lemmas, choos-
ing an appropriate string z was crucial. For instance, if z = abna2n then we
may take v = w = ǫ, x = a, u = abn and and we do not obtain contradiction.

b) We know (cf. the book) that the language M = { aibici | i ≥ 0 } is not
context-free. Notice that L2 ∩ a∗b∗c∗ = M . Remember that the intersection
of a context-free language with a regular language is context-free. So if L2

were context-free then M would also be context-free. The latter is not true,
so L2 is not context-free.

(A proof using the pumping lemma is also possible; take for instance z =
anbncn).

c) To show that L3 is not a context-free language, we show that the pumping
lemma does not hold for L3. To do this, for every number n we have to find
a string z ∈ L3, |z| ≥ n such that for every splitting of z into five pieces

z = uvwxy, where |vx| ≥ 1 and |vwx| ≤ n

some of the strings uviwxiy (i = 0, 1, . . .) are not in L3.

Let us try with

z = anbnanbn ∈ L.

Consider an arbitrary splitting as above. If |vx| is odd then uv0wx0y has
an odd length and thus is not in L3. So it remains to consider the case
of |vx| being even. Notice that 3n ≤ |uv0wx0y| ≤ 4n − 1. We have three
possibilities:

1. vwx is contained in the first half of z (so y = y′anbn, for some y′).
Then the last symbol of the first half of uv0wx0y is a (we removed some
symbols from the first half of z and “the middle moved to the right”).
Thus uv0wx0y is not in L3 (as the last symbol of its second half is b).

2. vwx is contained in both halves of z. So it begins with a b and ends
with an a. Thus v contains (at least one) b or x contains (at least one)
a. Thus the first half of uv0wx0y has fewer b’s than the second one1

or the second half of uv0wx0y has fewer a’s than the first one. Hence
uv0wx0y is not in L3.

3. vwx is contained in the second half of z (so u = anbnu′, for some u′).
This case is symmetric to case 1. The first symbol of the second half of
uv0wx0y is b and uv0wx0y 6∈ L3.

1As the halves of uv0wx0y are not shorter than 1.5n, the first half begins with an and the second

half ends with bn.
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Notice that in our proof we could not choose, for instance, z = anbanb.
(Then there exists a splitting z = uvwxy satisfying the conditions of the
pumping lemma such that uviwxiy ∈ L3 for all i ≥ 0).

For another proofs that L3 is not context-free, see [Kozen, p. 154] and
[Hopcroft&Ullman, p. 136].


