6 Regular Grammars, PDA's, and Properties of CFL's

6.1 Find CFG's for the following regular expressions:
a) $00(1+0)^{*} 1$
b) $101(101)^{*} 010(010)^{*}$
c) $(11+010)^{*} 11(00+11)^{*}$
6.2 For each of the following CFG's, give an NFA_{ϵ} accepting the language in question. (S is the start symbol in all cases.)
a) $\quad S \rightarrow 0 S|1 A| \epsilon$ $A \rightarrow 1 A \mid \epsilon$
b) $\quad S \rightarrow 01 S \mid 00$
c) $S \rightarrow 10 \mathrm{~A} \mid 00 \mathrm{~A}$
$A \rightarrow 10 A|01 B| 11$
$B \rightarrow 01 B \mid 11$
6.3 A context free grammar $G=(N, \Sigma, P, S)$ is called right-linear if all its productions are of the form

$$
A \rightarrow w B \quad \text { or } \quad A \rightarrow w
$$

where $w \in \Sigma^{*}$ and $A, B \in N$. A left-linear grammar is defined analogically. A grammar is regular if it is right- or left-linear.
Find a regular CFG which generates the language that is accepted by
a) the NFA in figure 13 ,

Figure 13: M_{13}
b) the NFA in figure 14.
6.4 Consider the following PDA M, where

States: $\left\{q_{0}, q_{1}, q_{2}\right\}$
Input alphabet: $\{a, b\}$
Stack alphabet: $\{a, \perp\}$
Initial state: q_{0}
Initial stack symbol: \perp
Final states: $\left\{q_{2}\right\}$
and the transition relation is

Figure 14: M_{14}

$$
\begin{aligned}
\delta=\{ & \left(\left(q_{0}, a, \perp\right),\left(q_{0}, a \perp\right)\right), \\
& \left(\left(q_{0}, a, a\right),\left(q_{0}, a a\right)\right), \\
& \left(\left(q_{0}, b, a\right),\left(q_{1}, \epsilon\right)\right), \\
& \left(\left(q_{1}, b, a\right),\left(q_{1}, \epsilon\right)\right), \\
& \left.\left(\left(q_{1}, \epsilon, \perp\right),\left(q_{2}, \epsilon\right)\right)\right\}
\end{aligned}
$$

Find the configurations that describe the actions of the automaton when the following strings are used as input. For each string, also state whether M accepts it by 1) final state and 2) empty stack.
a) $a a$
b) $a a b b a$
c) $a a a b b b$

Is M a deterministic pushdown automaton? In other words, is its next configuration relation a (partial) function?
6.5 Let M be a PDA where

States: $\left\{q_{0}, q_{1}, q_{2}\right\}$
Input alphabet: $\{a, b, c,(),,+,-, \cdot, /\}$
Stack alphabet: $\{a, b, c,(),,+,-, \cdot, /, E, F, T, \perp\}$
Initial state: q_{0}
Initial stack symbol: \perp
Final states: $\left\{q_{2}\right\}$
and the transition relation δ consists of the following transitions

$\left(\left(q_{0}, \epsilon, \perp\right),\left(q_{1}, E \perp\right)\right)$	$\left(\left(q_{1}, a, a\right),\left(q_{1}, \epsilon\right)\right)$
$\left(\left(q_{1}, \epsilon, E\right),\left(q_{1}, T\right)\right)$	$\left(\left(q_{1}, b, b\right),\left(q_{1}, \epsilon\right)\right)$
$\left(\left(q_{1}, \epsilon, E\right),\left(q_{1}, E+T\right)\right)$	$\left(\left(q_{1}, c, c\right),\left(q_{1}, \epsilon\right)\right)$
$\left(\left(q_{1}, \epsilon, E\right),\left(q_{1}, E-T\right)\right)$	$\left(\left(q_{1},,(),(),\left(q_{1}, \epsilon\right)\right)\right.$
$\left(\left(q_{1}, \epsilon, T\right),\left(q_{1}, F\right)\right)$	$\left.\left.\left(\left(q_{1},\right),\right)\right),\left(q_{1}, \epsilon\right)\right)$
$\left(\left(q_{1}, \epsilon, T\right),\left(q_{1}, T \cdot F\right)\right)$	$\left(\left(q_{1},+,+\right),\left(q_{1}, \epsilon\right)\right)$
$\left(\left(q_{1}, \epsilon, T\right),\left(q_{1}, T / F\right)\right)$	$\left(\left(q_{1},-,-\right),\left(q_{1}, \epsilon\right)\right)$
$\left(\left(q_{1}, \epsilon, F\right),\left(q_{1}, a\right)\right)$	$\left(\left(q_{1}, \cdot, \cdot\right),\left(q_{1}, \epsilon\right)\right)$
$\left(\left(q_{1}, \epsilon, F\right),\left(q_{1}, b\right)\right)$	$\left(\left(q_{1}, /, /\right),\left(q_{1}, \epsilon\right)\right)$
$\left(\left(q_{1}, \epsilon, F\right),\left(q_{1}, c\right)\right)$	$\left(\left(q_{1}, \epsilon, \perp\right),\left(q_{2}, \epsilon\right)\right)$
$\left(\left(q_{1}, \epsilon, F\right),\left(q_{1},(E)\right)\right)$	

Is M a deterministic pushdown automaton? Find the configurations ([Hopcroft \&Ullman] call them "instantaneous descriptions") that describe the actions of the automaton when the following strings are used as input. For each string, also state whether it belongs to $L(M)$.
a) $a \cdot b+c$
b) $a+a-b \cdot(a / b+b / c)$
6.6 Construct a DPDA (a PDA which is deterministic, conf. the explanation in 6.4) accepting the language $\left\{a^{i} b^{j} \mid 0 \leq i<j\right\}$.
6.7 For each of the following CFG's, construct a PDA which accepts the language generated by the CFG in question. (S is the start symbol, as usual.)
a) $S \rightarrow a A A$ $A \rightarrow a S|b S| a$
b) $\quad S \rightarrow a A \mid a B B$

$$
A \rightarrow B a \mid S b
$$

$$
B \rightarrow b A S \mid \epsilon
$$

6.8 Show that the following languages are not context-free.
a) $L_{1}=\left\{a^{j} b^{k} a^{l} \mid 0<j<k<l\right\}$
b) $L_{2}=\left\{w \in\{a, b, c\}^{*} \mid w\right.$ has an equal number of a 's, b 's and c^{\prime} 's $\}$
c) $L_{3}=\left\{w w \mid w \in\{a, b\}^{*}\right\}$
$6.1 \quad$ a) $\quad S \rightarrow 00 A 1$

$$
A \rightarrow \epsilon|0 A| 1 A
$$

b) $\quad S \rightarrow 101 A 010 B$ $A \rightarrow \epsilon \mid 101 A$ $B \rightarrow \epsilon \mid 010 B$
c) $\quad S \rightarrow A 11 B$
$A \rightarrow \epsilon|11 A| 010 A$ $B \rightarrow \epsilon|00 B| 11 B$
6.2 a) $\mathrm{NFA}_{\epsilon} M_{32}$ in figure 32.

Figure 32: M_{32}
b) $\mathrm{NFA}_{\epsilon} M_{33}$ in figure 33 .

Figure 33: M_{33}
c) $\mathrm{NFA}_{\epsilon} M_{34}$ in figure 34 .
6.3 a) The principle: a nonterminal X generates a terminal string w iff w moves the automaton from state X to a final state.
In the grammar below, A is the start symbol.

$$
\begin{aligned}
& A \rightarrow 0 B \\
& B \rightarrow 1 C \mid 1 \\
& C \rightarrow 0 B
\end{aligned}
$$

Figure 34: M_{34}
b) A is the start symbol

$$
\begin{aligned}
& A \rightarrow a B \mid b C \\
& B \rightarrow a D|a| b B \\
& C \rightarrow a D|a| b C \\
& D \rightarrow b E \mid b \\
& E \rightarrow a E \mid a
\end{aligned}
$$

6.6 Our automaton is $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\{a, \perp\}, \delta, q_{0}, \perp,\left\{q_{2}\right\}\right)$, where δ is defined below. It accepts $\left\{a^{i} b^{j} \mid 0 \leq i<j\right\}$ by final state. The role of the states is described by

state	consumed input	stack	
q_{0}	a^{i}	$a^{i} \perp$	where $i \geq 0$
q_{1}	$a^{i} b^{j}$	$a^{i-j} \perp$	where $i \geq j>0$
q_{2}	$a^{i} b^{i} b^{k}$	\perp	where $i \geq 0, k>0$
$\delta=\left\{\begin{array}{lll}\left(\left(q_{0}, a, \perp\right),\left(q_{0}, a \perp\right)\right), & \left(\left(q_{1}, b, a\right),\left(q_{1}, \epsilon\right)\right), \\ & \left(\left(q_{0}, b, \perp\right),\left(q_{2}, \perp\right)\right), & \left.\left(q_{1}, b, \perp\right),\left(q_{2}, \perp\right)\right), \\ & \left(\left(q_{0}, a, a\right),\left(q_{0}, a a\right)\right), & \left(\left(q_{2}, b, \perp\right),\left(q_{2}, \perp\right)\right), \\ & \left(\left(q_{0}, b, a\right),\left(q_{1}, \epsilon\right)\right) & \end{array}\right\}$			

6.7 The idea is to use the stack to simulate a leftmost derivation of the grammar. If the PDA has read w from the input, the stack contains $\gamma \perp$ and the state is q_{1} then $S \Rightarrow^{*} w \gamma$.
a) $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\{a, b, S, A, \perp\}, \delta, q_{0}, \perp,\left\{q_{2}\right\}\right)$, where

$$
\begin{aligned}
\delta=\{ & \left(\left(q_{0}, \epsilon, \perp\right),\left(q_{1}, S \perp\right)\right), \\
& \left(\left(q_{1}, \epsilon, S\right),\left(q_{1}, a A A\right),\right. \\
& \left(\left(q_{1}, \epsilon, A\right),\left(q_{1}, a S\right)\right), \\
& \left(\left(q_{1}, \epsilon, A\right),\left(q_{1}, b S\right)\right), \\
& \left(\left(q_{1}, \epsilon, A\right),\left(q_{1}, a\right)\right), \\
& \left(\left(q_{1}, a, a\right),\left(q_{1}, \epsilon\right)\right), \\
& \left(\left(q_{1}, b, b\right),\left(q_{1}, \epsilon\right)\right), \\
& \left.\left(\left(q_{1}, \epsilon, \perp\right),\left(q_{2}, \epsilon\right)\right)\right\} .
\end{aligned}
$$

b) $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\{a, b, S, A, B, \perp\}, \delta, q_{0}, \perp,\left\{q_{2}\right\}\right)$, where

$$
\begin{array}{rlr}
\delta=\{ & \left(\left(q_{0}, \epsilon, \perp\right),\left(q_{1}, S \perp\right),\right. & \left(\left(q_{1}, a, a\right),\left(q_{1}, \epsilon\right)\right), \\
& \left(\left(q_{1}, \epsilon, S\right),\left(q_{1}, a A\right)\right), & \left(\left(q_{1}, b, b\right),\left(q_{1}, \epsilon\right)\right), \\
& \left(\left(q_{1}, \epsilon, S\right),\left(q_{1}, a B B\right)\right), & \left(\left(q_{1}, \epsilon, \perp\right),\left(q_{2}, \epsilon\right)\right), \\
& \left(\left(q_{1}, \epsilon, A\right),\left(q_{1}, B a\right)\right), & \\
& \left(\left(q_{1}, \epsilon, A\right),\left(q_{1}, S b\right)\right), & \\
& \left(\left(q_{1}, \epsilon, B\right),\left(q_{1}, b A S\right)\right), & \\
& \left.\left(\left(q_{1}, \epsilon, B\right),\left(q_{1}, \epsilon\right)\right)\right\} &
\end{array}
$$

Both automata accept by final state.
6.8 a) Assume that L_{1} is context-free. Then the pumping lemma holds. According to the lemma, there exists a number n such that if a string z, not shorter than n, is in L_{1} (i.e. $|z| \geq n, z \in L_{1}$) then z can be split into five strings u, v, w, x, y :

$$
z=u v w x y
$$

such that

$$
|v x| \geq 1, \quad|v w x| \leq n, \quad u v^{i} w x^{i} y \in L_{1} \quad \text { for all } i \geq 0
$$

We show that this leads to a contradiction. Take

$$
z=a^{n} b^{n+1} a^{n+2} \in L_{1} .
$$

Then there exist strings u, v, w, x, y satisfying the conditions above. We have two possibilities:

1. $v w x$ does not overlap with the initial a^{n}. In other words, $u=a^{n} u^{\prime}$ (for some u^{\prime}). Take $i=0$. Then $u v^{0} w x^{0} y=u w y=a^{n} b^{k} a^{l}$, for some k and l. The string $a^{n} b^{k} a^{l}$ is shorter than $a^{n} b^{n+1} a^{n+2}$ (as $|v x| \geq 1$), hence $k<n+1$ or $l<n+2$ (or both). In both cases $n<k<l$ is impossibe, so $u w y \notin L_{1}$ and we have a contradiction.
2. Otherwise $v w x$ overlaps with the initial a^{n}. So it does not overlap with the final a^{n+2}, as $|v w x| \leq n$. In other words $y=y^{\prime} a^{n+2}$, for some y^{\prime}. Take $i=2$. If $u v^{2} w x^{2} y$ is not of the form $a^{j} b^{k} a^{l}$ then $u v^{2} w x^{2} y \notin L_{1}$, contradiction. If $u v^{2} w x^{2} y=a^{j} b^{k} a^{l}$ then $l=n+2$ but $j>n$ or $k>n+1$ (as $|v x| \geq 1$). Thus $j<k<l$ does not hold and $u v^{2} w x^{2} y \notin L_{1}$. Contradiction.

This completes the proof. As usually in proofs with pumping lemmas, choosing an appropriate string z was crucial. For instance, if $z=a b^{n} a^{2 n}$ then we may take $v=w=\epsilon, x=a, u=a b^{n}$ and and we do not obtain contradiction.
b) We know (cf. the book) that the language $M=\left\{a^{i} b^{i} c^{i} \mid i \geq 0\right\}$ is not context-free. Notice that $L_{2} \cap a^{*} b^{*} c^{*}=M$. Remember that the intersection of a context-free language with a regular language is context-free. So if L_{2} were context-free then M would also be context-free. The latter is not true, so L_{2} is not context-free.
(A proof using the pumping lemma is also possible; take for instance $z=$ $a^{n} b^{n} c^{n}$).
c) To show that L_{3} is not a context-free language, we show that the pumping lemma does not hold for L_{3}. To do this, for every number n we have to find a string $z \in L_{3},|z| \geq n$ such that for every splitting of z into five pieces

$$
z=u v w x y, \quad \text { where }|v x| \geq 1 \text { and }|v w x| \leq n
$$

some of the strings $u v^{i} w x^{i} y(i=0,1, \ldots)$ are not in L_{3}.
Let us try with

$$
z=a^{n} b^{n} a^{n} b^{n} \in L
$$

Consider an arbitrary splitting as above. If $|v x|$ is odd then $u v^{0} w x^{0} y$ has an odd length and thus is not in L_{3}. So it remains to consider the case of $|v x|$ being even. Notice that $3 n \leq\left|u v^{0} w x^{0} y\right| \leq 4 n-1$. We have three possibilities:

1. $v w x$ is contained in the first half of z (so $y=y^{\prime} a^{n} b^{n}$, for some y^{\prime}). Then the last symbol of the first half of $u v^{0} w x^{0} y$ is a (we removed some symbols from the first half of z and "the middle moved to the right"). Thus $u v^{0} w x^{0} y$ is not in L_{3} (as the last symbol of its second half is b).
2. $v w x$ is contained in both halves of z. So it begins with a b and ends with an a. Thus v contains (at least one) b or x contains (at least one) a. Thus the first half of $u v^{0} w x^{0} y$ has fewer b 's than the second one ${ }^{1}$ or the second half of $u v^{0} w x^{0} y$ has fewer a 's than the first one. Hence $u v^{0} w x^{0} y$ is not in L_{3}.
3. $v w x$ is contained in the second half of z (so $u=a^{n} b^{n} u^{\prime}$, for some u^{\prime}). This case is symmetric to case 1 . The first symbol of the second half of $u v^{0} w x^{0} y$ is b and $u v^{0} w x^{0} y \notin L_{3}$.
[^0]Notice that in our proof we could not choose, for instance, $z=a^{n} b a^{n} b$. (Then there exists a splitting $z=u v w x y$ satisfying the conditions of the pumping lemma such that $u v^{i} w x^{i} y \in L_{3}$ for all $i \geq 0$).
For another proofs that L_{3} is not context-free, see [Kozen, p. 154] and [Hopcroft\&Ullman, p. 136].

[^0]: ${ }^{1}$ As the halves of $u v^{0} w x^{0} y$ are not shorter than $1.5 n$, the first half begins with a^{n} and the second half ends with b^{n}.

