
10 Context-Free Grammars

5 Context-Free Grammars

For the derivability relation we use notation ⇒
G

,
∗⇒
G

instead of →
G

,
∗→
G

as used in [Kozen].

The former is more popular.

5.1 Consider the CFG G = ({E, T, F}, {a, b, c, +,−, ·, /, (,)}, P, E), where P com-
prises the productions

E → T | E + T | E − T
T → F | T · F | T/F
F → a | b | c | (E)

Find the derivation trees for the following strings.

a) a · b + c

b) a + a− b · (a/b + b/c)

5.2 Find CFGs which generate the following languages.

a) All strings in {0, 1}∗ for which every 0 is followed by 1 immediately to the
right.

b) All strings in {0, 1}∗ which are palindromes.

c) {0n1n | n ≥ 0}
d) All string in {a, b}∗ containing at least one a and one b, such that the number

of a’s preceding the first b is the same as the number of b’s following the
last a.

5.3 Consider the CFG G = ({S, A,B}, {a, b}, P, S), where P comprises the produc-
tions

S → aB | bA
A → a | aS | bAA
B → b | bS | aBB

Show that G is ambiguous.

5.4 For a CFG G = (N, Σ, P, S), a symbol X is useful if there exists a derivation

S
∗⇒
G

αXβ
∗⇒
G

w where w ∈ Σ∗. Otherwise X is useless. So a useless symbol does

not occur in any derivation of a terminal string from S.

a) Let G be a CFG consisting of the following productions (S is the start
symbol):

S → AB | CA
A → a
B → BC | AB
C → aB | b

Context-Free Grammars 11

Find an equivalent CFG (i.e. a grammar which generates the same language)
without useless nonterminal symbols.

This can be done by first finding each nonterminal from which no terminal
string can be generated. All the productions containing such nonterminals
can be removed. Then one finds those nonterminals that do not occur in any
sentential form and removes the productions containing them. For details
see [Hopcroft&Ullman].

b) In the algorithm outlined above, the order of the two steps is important.
Find a CFG for which reversing this order results in a grammar with some
remaining useless symbols.

5.5 Let G be a CFG consisting of the following productions (S is the start symbol):

S → AB
A → SA | BB | bB
B → b | aA | ε

Find an equivalent CFG with a single ε-production S → ε, and without unit
productions.

5.6 Find equivalent Chomsky normal-form CFGs for the two CFGs below (S is the
start symbol in both cases).

a) S → ¬S | (S ⊃ S) | p | q
b) S → A | ABA

A → aA | B | a
B → bB | b

5.7 [This is outside of the present scope of the course]. Find equivalent Greibach
normal-form CFGs for the two CFGs below (S is the start symbol in both cases).

a) S → AA | 0
A → SS | 1

b) S → AS | AB
A → BS | a
B → AA | b

Suggested Solutions: Context-Free Grammars 33

5.2 S is the start symbol in all grammars below.

a) S → 1S | 01S | ε
b) S → ε | 0 | 1 | 0S0 | 1S1

c) S → 0S1 | ε
d) S → aSb | ab | bAa

A → ε | aA | bA
Justification: Any string over {a, b} can be generated from A. Productions
S → ab | bAa generate the first b and the last a (and the number of a’s
preceding the first b is the same as the number of b’s following the last a,
it is 1 for the first production and 0 for the second). Production S → aSb
adds one a preceding the first b and one b following the last a.

5.3 The string aabbab has two distinct left derivations:
S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒ aabbAB ⇒ aabbaB ⇒ aabbab
S ⇒ aB ⇒ aaBB ⇒ aabB ⇒ aabbS ⇒ aabbaB ⇒ aabbab

5.4 a) No terminal string can be derived from B. Thus all productions involving
B either on the left hand side or on the right hand side may be removed.
This gives:

S → CA
A → a
C → b

Since both A and C can occur in derivations of terminal strings from the
start symbol, there remain no useless symbols in the above grammar.

b) For instance take
S → AB | a
A → a

1. No terminal string can be derived from B, so B is useless. Remove
S → AB. 2. Now no string containing A can be derived from S, so A is
useless. Remove A → a.

Doing step 2 first does not discover any useless symbol. Performing then
step 1 we remove S → AB only. A is not found useless.

5.5 The proof of Lemma 21.3 in [Kozen] suggests a method of removing ε- and unit
productions from a CFG G = (N, Σ, P, S). First we add productions to P in
order to obtain the smallest P1 ⊇ P such that

(a) if A → αBβ and B → ε are in P1 then A → αβ is in P1.

Any nonempty terminal string derived from S in G can be derived in (N, Σ, P1, S)
without using any ε-production. So we can remove the ε-productions from P1,
obtaining P ′

1.

Now we add productions to P ′
1 in order to obtain the smallest P2 ⊇ P ′

1 such that

(b) if A → B and B → γ are in P2 then A → γ is in P2.

34 Suggested Solutions: Context-Free Grammars

Any terminal string derived from S in (N, Σ, P ′
1, S) can be derived in (N, Σ, P2, S)

without using any unit production. Thus we can remove the unit productions
from P2, obtaining P ′

2.

G′ = (N, Σ, P ′
2, S) is the result, L(G′) = L(G)− {ε}. (Notice that in [Kozen] the

rules (a) and (b) are applied together. Doing this separately, as above, is also
correct.)

For the given grammar new productions are added as follows. In order to remove
ε-productions:

production with production gives production

B → ε S → AB S → A
A → BB A → B
A → bB A → b
A → B A → ε

A → ε S → AB S → B
A → SA A → S
B → aA B → a
S → A S → ε

S → ε A → SA A → A
A → S A → ε

B → ε S → B S → ε

The obtained set P ′
1 of productions is:

S → AB | A | B
A → BB | B | bB | b | SA | S
B → aA | a | b

To get rid of unit productions:

production with production gives production

S → A A → BB S → BB
A → B S → B
A → bB S → bB
A → b S → b
A → SA S → SA
A → S S → S

S → B B → aA S → aA
B → a S → a
B → b S → b

A → B B → aA A → aA
B → a A → a
B → b A → b

A → S S → AB A → AB
S → A A → A
S → B A → B

Suggested Solutions: Context-Free Grammars 35

The obtained set P ′
2 of productions is:

S → AB | BB | bB | b | SA | aA | a
A → AB | BB | bB | b | SA | aA | a
B → aA | a | b

As we want to obtain a grammar equivalent to the initial one, the removed pro-
duction S → ε has to be added.

5.6 a) Introduce productions for each terminal symbol which does not occur on its
own on the right hand side of some production, i.e.:

A → ¬
B → (
C →⊃
D →)

Then replace all such terminal symbols in the original grammar with the
corresponding nonterminal from the productions above.

S → AS | BSCSD | p | q
A → ¬
B → (
C →⊃
D →)

The only production above which is not in Chomsky normal-form is S →
BSCSD. We can systematically rewrite this production into a set of pro-
ductions in Chomsky normal-form as follows:

S → BSCSD is replaced by S → BE and E → SCSD
E → SCSD is replaced by E → SF and F → CSD
F → CSD is replaced by R → CG and G → SD

Thus an equivalent Chomsky normal-form grammar is obtained:

S → AS | BE | p | q
E → SF
F → CG
G → SD
A → ¬
B → (
C →⊃
D →)

b) First eliminate all unit productions. This yields

S → ABA | aA | a | bB | b
A → aA | a | bB | b
B → bB | b

We then proceed as in the previous exercise: productions for terminal sym-
bols are introduced where necessary and productions with right hand sides

36 Suggested Solutions: Context-Free Grammars

comprising three or more nonterminals are systematically rewritten into a
set of productions in Chomsky normal-form. This results in the following
grammar:

S → AE | CA | DB | a | b
A → CA | DB | a | b
B → DB | b
E → BA
C → a
D → b

5.7 a) We follow the method shown in [Hopcroft&Ullman]. Since the grammar
already is in Chomsky normal-form, some work is saved. First we rename
the nonterminals as follows: S = A1 and B = A2. This yields the grammar:

A1 → A2A2 | 0
A2 → A1A1 | 1

Then we inspect each production for A1 and A2, and construct new rules
as follows. Suppose Ai → Ajα is a production (where α is a string of
nonterminals). If i < j, then that production is left as it is. If i = j, then
we must do something to eliminate this left recursion. This is described
below. If i > j, then we replace the production by the set of productions
obtained by replacing Aj in the rule Ai → Ajα by the right hand side of
each production for Aj.

A1 → A2A2 is left unchanged.
A2 → A1A1 is replaced by A2 → A2A2A1 | 0A1

Here, A2 → A2A2A1 is an example of a left-recursive production. In order
to get rid of such productions, we proceed as follows. Suppose

A → Aα1 | · · · | Aαn | β1 | · · · | βm

are all the productions for A, where α1, . . . , αn are strings of nonterminals,
β1, . . . , βm are strings of terminals and nonterminals which do not begin by
A. The A production are now replaced by

A → β1 | · · · | βm | β1A
′ | · · · βmA′

where A′ is a new nonterminal. The productions for A′ are

A′ → α1 | · · · | αn | α1A
′ | · · · | αnA

′

Thus A2 → A2A2A1 | 0A1 | 1 should be replaced by

A2 → 0A1 | 1 | 0A1A3 | 1A3

A3 → A2A1 | A2A1A3

Then we continue with the rules for A3.

A3 → A2A1 is replaced by
A3 → 0A1A1 | 1A1 | 0A1A3A1 | 1A3A1

A3 → A2A1A3 is replaced by
A3 → 0A1A1A3 | 1A1A3 | 0A1A3A1A3 | 1A3A1A3

Suggested Solutions: Context-Free Grammars 37

Thus the following grammar has been obtained:

A1 → A2A2 | 0
A2 → 0A1 | 1 | 0A1A3 | 1A3

A3 → 0A1A1 | 1A1 | 0A1A3A1 | 1A3A1

| 0A1A1A3 | 1A1A3 | 0A1A3A1A3 | 1A3A1A3

The result of all our efforts is that whenever the first symbol of a right hand
side of a production is a nonterminal, it will have a higher number than the
nonterminal on the left hand side. However, the grammar is still not quite
in Greibach normal-form. In order to obtain Greibach normal-form, we have
to do one more pass over the productions. Whenever the first symbol on
a right hand side is a nonterminal, it should be replaced by the right hand
sides of the productions for this nonterminal.

A1 → A2A2 is replaced by
A1 → 0A1A2 | 1A2 | 0A1A3A2 | 1A3A2

Thus we finally obtain:

A1 → 0A1A2 | 1A2 | 0A1A3A2 | 1A3A2 | 0
A2 → 0A1 | 1 | 0A1A3 | 1A3

A3 → 0A1A1 | 1A1 | 0A1A3A1 | 1A3A1

| 0A1A1A3 | 1A1A3 | 0A1A3A1A3 | 1A3A1A3

