4 Regular Languages

4.1 Let $\Sigma=\{0,1\}$ and $\Gamma=\{a, b\}$ be two alphabets. Suppose $h: \Sigma \rightarrow \Gamma^{*}$ is a homomorphism such that:

$$
\begin{aligned}
& h(0)=a a a b \\
& h(1)=b b b a
\end{aligned}
$$

a) What is $h(01)$?
b) What is $h(101)$?
c) Suppose $L \subseteq \Sigma^{*}$ is the language 001^{*}. Give a regular expression for $h(L)$.
4.2 Let $\Sigma=\{0,1\}$ and $\Gamma=\{a, b\}$ be two alphabets. Suppose $h: \Sigma \rightarrow \Gamma^{*}$ is a homomorphism such that:

$$
\begin{aligned}
& h(0)=a a \\
& h(1)=a b a
\end{aligned}
$$

Suppose $L \subseteq \Gamma^{*}$ is the language $(a b+b a)^{*} a$. Give a minimal DFA which accepts $h^{-1}(L)=\left\{x \in \Sigma^{*} \mid h(x) \in L\right\}$.
4.3 Suppose $L \subseteq\{a, b\}^{*}$ is the language $(a b)^{*}+a(b a+a)^{*}$. Give a minimal DFA which accepts the language $\bar{L}=\left\{x \in\{a, b\}^{*} \mid x \notin L\right\}$.
4.4 Suppose $L_{1} \subseteq\{0,1\}^{*}$ and $L_{2} \subseteq\{0,1\}^{*}$ are the languages $(0+11)^{*}$ and $11^{*} 0$ respectively. Give a minimal DFA which accepts the language $L_{1} \cap L_{2}$.
4.5 Show, by using the pumping lemma, that the following languages are not regular.
a) $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
b) $L_{2}=\left\{x \in\{0,1\}^{*} \mid x=x^{R}\right\}$
4.2 Since $L \subseteq \Gamma^{*}$ is a regular language, there exists a DFA $M_{26}=\left(Q, \Gamma, \delta_{26}, q_{0}, F\right)$ which accepts L (see figure 26). (Notice that there exist simpler DFA's for L.)

Figure 26: M_{26}
A new DFA M^{\prime}, accepting $h^{-1}(L)$, may now be constructed from M_{26} as follows: Let $M^{\prime}=\left(Q, \Sigma, \delta_{27}, q_{0}, F\right)=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\},\{0,1\}, \delta_{27}, q_{0},\left\{q_{2}\right\}\right)$ where δ_{27} is defined by $\delta_{27}(q, x)=\delta_{26}(q, h(x))$ for $q \in Q$ and $x \in\{0,1\}$, e.g. $\delta_{27}\left(q_{0}, 0\right)=$ $\delta_{26}\left(q_{0}, h(0)\right)=\delta_{26}\left(q_{0}, a a\right)=q_{5}$ (see table 6).

State	Input	
	0	1
q_{0}	q_{5}	q_{2}
q_{1}	q_{5}	q_{2}
q_{2}	q_{5}	q_{5}
q_{3}	q_{2}	q_{4}
q_{4}	q_{5}	q_{2}
q_{5}	q_{5}	q_{5}

Table 6: δ_{27}
The only states which can be reached from q_{0} are q_{0}, q_{2}, and q_{5}. Thus the states q_{1}, q_{3}, and q_{4} may be removed from M^{\prime}. The result is the DFA M_{27}, which accepts $h^{-1}(L)$ and which can be shown to be minimal (see figure 27).
4.3 L is the language $(a b)^{*}+a(b a+a)^{*}$. Let $M=\left(Q,\{a, b\}, \delta, q_{0}, F\right)$ be a DFA such that $L(M)=L$. Then the DFA $M^{\prime}=\left(Q,\{a, b\}, \delta, q_{0}, F^{\prime}\right)$, where $F^{\prime}=Q-F$, accepts \bar{L}. A minimal DFA M_{28} is given in figure 28.
Note that if M is minimal then M^{\prime} is minimal too. This is because the equivalence relation $\equiv \ldots$ is the same for both languages $\left(\equiv_{L}=\equiv_{\bar{L}}\right)$.
4.4 $L_{1}=(0+11)^{*}$ and $L_{2}=11^{*} 0$. DFAs $M_{29}=\left(Q_{1},\{0,1\}, \delta_{1}, q_{1,0}, F_{1}\right)$ accepting L_{1} and $M_{30}=\left(Q_{2},\{0,1\}, \delta_{2}, q_{2,0}, F_{2}\right)$ accepting L_{2} are given in figure 29 and figure 30 respectively.

Figure 27: M_{27}

Figure 28: M_{28}

Figure 29: M_{29}

Figure 30: M_{30}

A DFA M accepting $L_{1} \cap L_{2}$ may now be constructed from M_{29} and M_{30} as follows: Let $M=\left(Q_{1} \times Q_{2},\{0,1\}, \delta_{7},\left\langle q_{1,0}, q_{2,0}\right\rangle, F_{1} \times F_{2}\right)$. The states of M are thus pairs where the first component is a state of M_{1} and the second component is a state in M_{2}. The transition function δ_{7} is then defined by $\delta_{7}(\langle q, r\rangle, x)=\left\langle\delta_{1}(q, x), \delta_{2}(r, x)\right\rangle$ for $q \in Q_{1}, r \in Q_{2}$ and $x \in\{0,1\}$ (see table 7).

State	Input	
	0	1
$\left\langle q_{1,0}, q_{2,0}\right\rangle$	$\left\langle q_{1,0}, q_{2,3}\right\rangle$	$\left\langle q_{1,1}, q_{2,1}\right\rangle$
$\left\langle q_{1,0}, q_{2,3}\right\rangle$	$\left\langle q_{1,0}, q_{2,3}\right\rangle$	$\left\langle q_{1,1}, q_{2,3}\right\rangle$
$\left\langle q_{1,1}, q_{2,1}\right\rangle$	$\left\langle q_{1,2}, q_{2,2}\right\rangle$	$\left\langle q_{1,0}, q_{2,1}\right\rangle$
$\left\langle q_{1,1}, q_{2,3}\right\rangle$	$\left\langle q_{1,2}, q_{2,3}\right\rangle$	$\left\langle q_{1,0}, q_{2,3}\right\rangle$
$\left\langle q_{1,2}, q_{2,2}\right\rangle$	$\left\langle q_{1,2}, q_{2,3}\right\rangle$	$\left\langle q_{1,2}, q_{2,3}\right\rangle$
$\left\langle q_{1,0}, q_{2,1}\right\rangle$	$\left\langle q_{1,0}, q_{2,2}\right\rangle$	$\left\langle q_{1,1}, q_{2,1}\right\rangle$
$\left\langle q_{1,2}, q_{2,3}\right\rangle$	$\left\langle q_{1,2}, q_{2,3}\right\rangle$	$\left\langle q_{1,2}, q_{2,3}\right\rangle$
$\left\langle q_{1,0}, q_{2,2}\right\rangle$	$\left\langle q_{1,0}, q_{2,3}\right\rangle$	$\left\langle q_{1,1}, q_{2,3}\right\rangle$

Table 7: δ_{7}

Minimization of M (and renaming of states) gives M_{31} of figure 31.

Figure 31: M_{31}
4.5 The pumping lemma: If L is a regular language, then there exists a constant n such that $z \in L$ and $|z| \geq n$ implies that there exist strings u, v and w satisfying the following conditions:

1. $z=u v w$
2. $|v| \geq 1$ and $|u v| \leq n$
3. $u v^{i} w \in L$ for all $i \geq 0$

In order to show that a language is not regular, we first assume the opposite to be true, and then use the pumping lemma to show that our assumption leads to a contradiction.
a) Suppose L_{1} is a regular language and let n be the constant that then exists according to the lemma. Consider the string $z=0^{n} 1^{n}$. We have $z \in L_{1}$ and $|z|=2 n \geq n$, which implies that there should be strings u, v and w satisfying the above conditions. If we can show that there in fact are no such strings, i.e. that regardless of how u, v and w are chosen, $u v^{i} w \notin L_{1}$ for some i, then we have obtained our contradictions.
$z=u v w$ and $|u v| \leq n$ implies that the strings u and v can only consist of 0 , i.e. $u=0^{k}$ and $v=0^{l}$ where $k+l \leq n$. This means that we must have $w=0^{n-k-l} 1^{n}$.
Now consider $u v^{2} w=0^{n+l} 1^{n}$. If $|v| \geq 1$, then this implies $l \geq 1$, i.e. $u v^{2} w \notin L_{2}$. Thus we have a contradiction.
b) Suppose L_{2} is a regular language and let n be the constant in the pumping lemma. Then consider $z=0^{n} 10^{n} ; z \in L_{2}$ and $|z|=2 n+1 \geq n . z=u v w$ and $|u v| \leq n$ implies that $u=0^{k}, v=0^{l}(k+l \leq n)$ and $w=0^{n-k-l} 10^{n}$.
Now consider $u v^{0} w=u w=0^{n-l} 10^{n}$. Since $|v| \geq 1 \Rightarrow l \geq 1$, we have $n-l<n$, i.e. $u v^{0} w=u w \notin L_{2}$. Contradiction!

