4 Regular Languages

4.1 Let $\Sigma = \{0, 1\}$ and $\Gamma = \{a, b\}$ be two alphabets. Suppose $h : \Sigma \to \Gamma^*$ is a homomorphism such that:

h(0) = aaab

- h(1) = bbba
- a) What is h(01)?
- b) What is h(101)?
- c) Suppose $L \subseteq \Sigma^*$ is the language 001^{*}. Give a regular expression for h(L).
- **4.2** Let $\Sigma = \{0, 1\}$ and $\Gamma = \{a, b\}$ be two alphabets. Suppose $h : \Sigma \to \Gamma^*$ is a homomorphism such that:
 - h(0) = aah(1) = aba

Suppose $L \subseteq \Gamma^*$ is the language $(ab + ba)^*a$. Give a minimal DFA which accepts $h^{-1}(L) = \{x \in \Sigma^* \mid h(x) \in L\}.$

- **4.3** Suppose $L \subseteq \{a, b\}^*$ is the language $(ab)^* + a(ba + a)^*$. Give a minimal DFA which accepts the language $\overline{L} = \{x \in \{a, b\}^* \mid x \notin L\}$.
- **4.4** Suppose $L_1 \subseteq \{0,1\}^*$ and $L_2 \subseteq \{0,1\}^*$ are the languages $(0+11)^*$ and 11^*0 respectively. Give a *minimal* DFA which accepts the language $L_1 \cap L_2$.
- 4.5 Show, by using the pumping lemma, that the following languages are *not* regular.

a)
$$L_1 = \{0^n 1^n \mid n \ge 0\}$$

b) $L_2 = \{x \in \{0, 1\}^* \mid x = x^R\}$

4.2 Since $L \subseteq \Gamma^*$ is a regular language, there exists a DFA $M_{26} = (Q, \Gamma, \delta_{26}, q_0, F)$ which accepts L (see figure 26). (Notice that there exist simpler DFA's for L.)

Figure 26: M_{26}

A new DFA M', accepting $h^{-1}(L)$, may now be constructed from M_{26} as follows: Let $M' = (Q, \Sigma, \delta_{27}, q_0, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta_{27}, q_0, \{q_2\})$ where δ_{27} is defined by $\delta_{27}(q, x) = \delta_{26}(q, h(x))$ for $q \in Q$ and $x \in \{0, 1\}$, e.g. $\delta_{27}(q_0, 0) = \delta_{26}(q_0, h(0)) = \delta_{26}(q_0, aa) = q_5$ (see table 6).

State	Input	
	0	1
q_0	q_5	q_2
q_1	q_5	q_2
q_2	q_5	q_5
q_3	q_2	q_4
\overline{q}_4	q_5	q_2
\overline{q}_5	q_5	q_5

Table 6: δ_{27}

The only states which can be reached from q_0 are q_0 , q_2 , and q_5 . Thus the states q_1, q_3 , and q_4 may be removed from M'. The result is the DFA M_{27} , which accepts $h^{-1}(L)$ and which can be shown to be minimal (see figure 27).

4.3 L is the language $(ab)^* + a(ba + a)^*$. Let $M = (Q, \{a, b\}, \delta, q_0, F)$ be a DFA such that L(M) = L. Then the DFA $M' = (Q, \{a, b\}, \delta, q_0, F')$, where F' = Q - F, accepts \overline{L} . A minimal DFA M_{28} is given in figure 28.

Note that if M is minimal then M' is minimal too. This is because the equivalence relation \equiv_{\dots} is the same for both languages ($\equiv_L = \equiv_{\overline{L}}$).

4.4 $L_1 = (0 + 11)^*$ and $L_2 = 11^*0$. DFAs $M_{29} = (Q_1, \{0, 1\}, \delta_1, q_{1,0}, F_1)$ accepting L_1 and $M_{30} = (Q_2, \{0, 1\}, \delta_2, q_{2,0}, F_2)$ accepting L_2 are given in figure 29 and figure 30 respectively.

Figure 28: M_{28}

Figure 29: M_{29}

Figure 30: M_{30}

A DFA M accepting $L_1 \cap L_2$ may now be constructed from M_{29} and M_{30} as follows: Let $M = (Q_1 \times Q_2, \{0, 1\}, \delta_7, \langle q_{1,0}, q_{2,0} \rangle, F_1 \times F_2)$. The states of M are thus pairs where the first component is a state of M_1 and the second component is a state in M_2 . The transition function δ_7 is then defined by $\delta_7(\langle q, r \rangle, x) = \langle \delta_1(q, x), \delta_2(r, x) \rangle$ for $q \in Q_1, r \in Q_2$ and $x \in \{0, 1\}$ (see table 7).

State	Input	
	0	1
$\langle q_{1,0}, q_{2,0} \rangle$	$\langle q_{1,0}, q_{2,3} \rangle$	$\langle q_{1,1}, q_{2,1} \rangle$
$\langle q_{1,0}, q_{2,3} \rangle$	$\langle q_{1,0}, q_{2,3} \rangle$	$\langle q_{1,1}, q_{2,3} \rangle$
$\langle q_{1,1}, q_{2,1} \rangle$	$\langle q_{1,2}, q_{2,2} \rangle$	$\langle q_{1,0}, q_{2,1} \rangle$
$\langle q_{1,1}, q_{2,3} \rangle$	$\langle q_{1,2}, q_{2,3} \rangle$	$\langle q_{1,0}, q_{2,3} \rangle$
$\langle q_{1,2}, q_{2,2} \rangle$	$\langle q_{1,2}, q_{2,3} \rangle$	$\langle q_{1,2}, q_{2,3} \rangle$
$\langle q_{1,0}, q_{2,1} \rangle$	$\langle q_{1,0}, q_{2,2} \rangle$	$\langle q_{1,1}, q_{2,1} \rangle$
$\langle q_{1,2}, q_{2,3} \rangle$	$\langle q_{1,2}, q_{2,3} \rangle$	$\langle q_{1,2}, q_{2,3} \rangle$
$\langle q_{1,0}, q_{2,2} \rangle$	$\langle q_{1,0}, q_{2,3} \rangle$	$\langle q_{1,1}, q_{2,3} \rangle$

Table 7: δ_7

Minimization of M (and renaming of states) gives M_{31} of figure 31.

Figure 31: M_{31}

- **4.5** The pumping lemma: If L is a regular language, then there exists a constant n such that $z \in L$ and $|z| \ge n$ implies that there exist strings u, v and w satisfying the following conditions:
 - 1. z = uvw
 - 2. $|v| \ge 1$ and $|uv| \le n$
 - 3. $uv^i w \in L$ for all $i \ge 0$

In order to show that a language is *not* regular, we first assume the opposite to be true, and then use the pumping lemma to show that our assumption leads to a contradiction.

a) Suppose L_1 is a regular language and let n be the constant that then exists according to the lemma. Consider the string $z = 0^n 1^n$. We have $z \in L_1$ and $|z| = 2n \ge n$, which implies that there should be strings u, v and wsatisfying the above conditions. If we can show that there in fact are no such strings, i.e. that regardless of how u, v and w are chosen, $uv^i w \notin L_1$ for some i, then we have obtained our contradictions.

z = uvw and $|uv| \le n$ implies that the strings u and v can only consist of 0, i.e. $u = 0^k$ and $v = 0^l$ where $k + l \le n$. This means that we must have $w = 0^{n-k-l}1^n$.

Now consider $uv^2w = 0^{n+l}1^n$. If $|v| \ge 1$, then this implies $l \ge 1$, i.e. $uv^2w \notin L_2$. Thus we have a contradiction.

b) Suppose L_2 is a regular language and let n be the constant in the pumping lemma. Then consider $z = 0^n 10^n$; $z \in L_2$ and $|z| = 2n + 1 \ge n$. z = uvwand $|uv| \le n$ implies that $u = 0^k$, $v = 0^l$ $(k + l \le n)$ and $w = 0^{n-k-l}10^n$. Now consider $uv^0w = uw = 0^{n-l}10^n$. Since $|v| \ge 1 \Rightarrow l \ge 1$, we have n - l < n, i.e. $uv^0w = uw \notin L_2$. Contradiction!