3 Regular Expressions and Minimization of DFAs

3.1 Let $r=\left(1+00^{*} 11\right)\left(0+1(0+10)^{*} 11\right)^{*}$. Which of the following strings belong to $L(r)$?
a) 010001
b) 00111011
c) 1100110
d) 101100
e) 10011001
3.2 Give regular expressions for the following languages over the alphabet $\{0,1\}$.
a) The set of all strings ending in 00 .
b) The set of all strings in which the substring 00 occurs at most once.
3.3 Construct a NFA_{ϵ} which accepts the language defined by the regular expression $10+(0+11) 0^{*} 1$.
3.4 Show that the equalities below hold for regular expressions. (r, s and t denote arbitrary regular expressions over some alphabet.)
a) $r+t=t+r$
b) $r(s+t)=r s+r t$
c) $(r+\epsilon)^{*}=r^{*}$
d) $r \emptyset=\emptyset r=\emptyset$
e) $\emptyset^{*}=\epsilon$
3.5 Give regular expressions that define
a) the language accepted by the DFA in figure 9 ,

Figure 9: M_{9}
b) the language accepted by the DFA in figure 10 .

Figure 10: M_{10}
3.6 a) Minimize the DFA in figure 11

Figure 11: M_{11}
b) Minimize the DFA in figure 12

Figure 12: M_{12}
3.2 a) $(0+1)^{*} 00$
b) $(1+01)^{*}(\epsilon+0+00)(1+10)^{*}$
3.3 By decomposing the regular expression syntactically according to the recursive definition of regular expressions, an NFA_{ϵ} can be constructed systematically in a bottom-up fashion by successively joining NFA_{ϵ} s corresponding to subexpressions according to the regular operator (*, concatenation, +) in question. The resulting NFA_{ϵ} is shown in figure 23.

Figure 23: M_{23}
3.5 a) We apply the approach presented at the lecture. It is based on equation solving. The equation system corresponding to the automaton is:

$$
\begin{aligned}
& A_{1}=0 A_{2}+1 A_{3} \\
& A_{2}=0 A_{1}+1 A_{3}+\epsilon \\
& A_{3}=0 A_{2}+1 A_{2}+\epsilon
\end{aligned}
$$

Each A_{i} stands for a regular expression giving the language of strings that move the automaton from state i to some final state. As 1 is the initial state, we have to find A_{1}.
The main principle is that the solution of the equation $X=A X+B$ is $X=A^{*} B$ (provided the language described by A does not contain ϵ). For details see the slides from the lecture.
First we eliminate A_{2}

$$
\begin{aligned}
& A_{1}=0\left(0 A_{1}+1 A_{3}+\epsilon\right)+1 A_{3} \\
& A_{3}=0\left(0 A_{1}+1 A_{3}+\epsilon\right)+1\left(0 A_{1}+1 A_{3}+\epsilon\right)+\epsilon
\end{aligned}
$$

This is equivalent to

$$
\begin{aligned}
& A_{1}=00 A_{1}+01 A_{3}+0+1 A_{3} \\
& A_{3}=(0+1)\left(0 A_{1}+1 A_{3}+\epsilon\right)+\epsilon
\end{aligned}
$$

and to

$$
\begin{aligned}
& A_{1}=00 A_{1}+(01+1) A_{3}+0 \\
& A_{3}=(0+1) 0 A_{1}+(0+1) 1 A_{3}+(0+1+\epsilon)
\end{aligned}
$$

Now we can eliminate A_{3}. The solution of the last equation is

$$
A_{3}=((0+1) 1)^{*}\left(((0+1) 0) A_{1}+(0+1+\epsilon)\right)
$$

Applying this to the first one we obtain

$$
A_{1}=00 A_{1}+(01+1)((0+1) 1)^{*}\left(((0+1) 0) A_{1}+(0+1+\epsilon)\right)+0
$$

Let us denote $(01+1)((0+1) 1)^{*}$ by B. The previous equation is equivalent to

$$
A_{1}=00 A_{1}+B((0+1) 0) A_{1}+B(0+1+\epsilon)+0
$$

The solution to this equation is

$$
A_{1}=((00+B((0+1) 0)))^{*}(B(0+1+\epsilon)+0)
$$

The latter regular expression defines the language accepted by M_{9}.
b) Here we use the method presented in [Hopcroft\&Ullman]. It is similar to that from [Kozen]. $r_{i j}^{k}$ denotes the same regular expression as $\alpha_{q_{i} q_{j}}^{\{1, \ldots, k\}}$ in the notation of [Kozen].

$$
\begin{aligned}
& L(M)=r_{1,2}^{3} \\
& r_{1,2}^{3}=r_{1,3}^{2}\left(r_{3,3}^{2}\right)^{*} r_{3,2}^{2}+r_{1,2}^{2} \\
& r_{1,3}^{2}=r_{1,2}^{1}\left(r_{2,2}^{1}\right)^{*} r_{2,3}^{1}+r_{1,3}^{1} \\
& r_{1,2}^{1}=1 \\
& r_{2,2}^{1}=11+\epsilon \\
& r_{2,3}^{1}=10+0 \\
& r_{1,3}^{1}=0 \\
& r_{1,3}^{2}=1(11+\epsilon)^{*}(10+0)+0=1^{*} 0 \\
& r_{3,3}^{2}=r_{3,2}^{1}\left(r_{2,2}^{1}\right)^{*} r_{2,3}^{1}+r_{3,3}^{1} \\
& r_{3,2}^{1}=01+1 \\
& r_{3,3}^{1}=00+\epsilon \\
& r_{3,3}^{2}=(01+1)(11+\epsilon)^{*}(10+0)+(00+\epsilon)=(0+1) 1^{*} 0+\epsilon \\
& r_{3,2}^{2}=r_{3,2}^{1}\left(r_{2,2}^{1}\right)^{*} r_{2,2}^{1}+r_{3,2}^{1} \\
& r_{3,2}^{2}=(01+1)(11+\epsilon)^{*}(11+\epsilon)+01+1=(01+1)(11)^{*} \\
& r_{1,2}^{2}=r_{1,2}^{1}\left(r_{2,2}^{1}\right)^{*} r_{2,2}^{1}+r_{1,2}^{1} \\
& r_{1,2}^{2}=1(11+\epsilon)^{*}(11+\epsilon)^{2}+1=1(11)^{*} \\
& r_{1,2}^{3}=1^{*} 0\left((0+1) 1^{*} 0\right)^{*}(01+1)(11)^{*}+1(11)^{*}
\end{aligned}
$$

3.6 a) A minimal DFA is given in figure 24.

Figure 24: M_{24}
b) A minimal DFA is given in figure 25 .

Figure 25: M_{25}

