2 DFA, NFA, and NFA_{ϵ}

- **2.1** Determine which of the strings below belong to the language $L(M_1)$ (the DFA is given in figure 1). Also give $L(M_1)$ in set notation.
 - a) 001
 - b) 001011011011
 - c) 00101101001

- **2.2** Determine which of the strings below belong to the language $L(M_2)$ (the NFA is given in figure 2). Also give $L(M_2)$ in set notation.
 - a) 11110101
 - b) 1111111
 - c) 101101101111
 - d) 10110010011
- **2.3** Determine which of the strings below belong to the language $L(M_3)$ (the NFA_e is given in figure 3). Also give $L(M_3)$ in set notation.
 - a) 11111
 - b) 1101011
 - c) 1011100
 - d) 0101111
- 2.4 For each of the following languages, construct a DFA that accepts the language.
 - a) $L_1 = \{x \in \{0, 1\}^* \mid x \text{ ends in } 00\}$
 - b) $L_2 = \{x \in \{0,1\}^* \mid x = (01)^n, n \ge 0\}$
 - c) $L_3 = \{x \in \{0,1\}^* \mid \text{every } 0 \text{ is immediately followed by } 1\}$
- **2.5** Two automata M and M' are equivalent if they accept the same language, i.e. L(M) = L(M').

Figure 4: M_4

- a) Given the NFA in figure 4, construct an equivalent DFA.
- b) Given the NFA in figure 5, construct an equivalent DFA.
- c) Given the NFA in figure 6, construct an equivalent DFA.

Figure 5: M_5

Figure 6: M_6

2.6 a) Given the NFA_{ϵ} in figure 7, construct an equivalent DFA.

Figure 7: M_7

b) Given the NFA $_{\epsilon}$ in figure 8, construct an equivalent DFA.

Figure 8: M_8

2.4 a) An example of a DFA M_{15} such that $L(M_{15}) = L_1$ is given in figure 15.

Figure 15: M_{15}

Specification of the states:

- q_0 : The last symbol read, if any, is 1.
- q_1 : The last symbol read is 0; the last but one, if any, is 1.
- q_2 : The last two symbols read are 00.
- b) An example of a DFA M_{16} such that $L(M_{16}) = L_2$ is given in figure 16.

Figure 16: M_{16}

- q_0 : Any number (incl. 0) of 01:s read.
- q_1 : Any number (incl. 0) of 01:s followed by 0 read.
- q_2 : Something else read.

c) An example of a DFA M_{17} such that $L(M_{17}) = L_4$ is given in figure 17.

Figure 17: M_{17}

- q_0 : The last symbol read, if any, is 1; any previous 0 is immediately followed by 1.
- q_1 : The last symbol read is 0, any previous 0 is immediately followed by 1. q_2 : 00 has been read.
- **2.5** Following [Hopcroft&Ullman] we often use [] instead of {} to denote a set of states which is a state of a DFA.
 - a) δ_{18} is given in table 1.

State	Input	
	a	b
$[q_0]$	$[q_0, q_1]$	$[q_0]$
$[q_0,q_1]$	$[q_0,q_1]$	$[q_0, q_2]$
$[q_0, q_2]$	$[q_0, q_1, q_2]$	$[q_0]$
$[q_0, q_1, q_2]$	$[q_0, q_1, q_2]$	$[q_0, q_2]$

Table 1: δ_{18}

The new set of final states is $F' = \{x \in 2^Q \mid x \cap \{q_1\} \neq \emptyset\} = \{[q_0, q_1], [q_0, q_1, q_2]\}.$ Let

$$\begin{split} & [q_0] = A \\ & [q_0, q_1] = B \\ & [q_0, q_2] = C \\ & [q_0, q_1, q_2] = D \end{split}$$

The transition diagram for the DFA is given in figure 18.

b) δ_{19} is given in table 2.

The new set of final states is $F' = \{x \in 2^Q \mid x \cap \{q_3\} \neq \emptyset\} = \{[q_0, q_3], [q_0, q_1, q_3], [q_0, q_2, q_3], [q_0, q_1, q_2, q_3]\}$. Let

$$\begin{split} & [q_0] = A \\ & [q_0, q_1] = B \\ & [q_0, q_1, q_2] = C \\ & [q_0, q_2] = D \\ & [q_0, q_1, q_2, q_3] = E \end{split}$$

Figure 18: M_{18}

State	Input	
	0	1
$[q_0]$	$[q_0,q_1]$	$[q_0]$
$[q_0,q_1]$	$[q_0, q_1, q_2]$	$[q_0, q_2]$
$[q_0, q_1, q_2]$	$[q_0, q_1, q_2, q_3]$	$[q_0, q_2]$
$[q_0,q_2]$	$[q_0, q_1, q_3]$	$[q_0]$
$[q_0, q_1, q_2, q_3]$	$[q_0, q_1, q_2, q_3]$	$[q_0, q_2, q_3]$
$[q_0, q_2, q_3]$	$[q_0, q_1, q_3]$	$[q_0,q_3]$
$[q_0, q_1, q_3]$	$[q_0, q_1, q_2, q_3]$	$[q_0, q_2, q_3]$
$[q_0,q_3]$	$[q_0, q_1, q_3]$	$[q_0,q_3]$

Table 2: δ_{19}

$$[q_0, q_2, q_3] = F$$

[q_0, q_1, q_3] = G
[q_0, q_3] = H

The transition diagram for the DFA is given in figure 19.

c) δ_{20} is given in table 3.

The new set of final states is $F' = \{x \in 2^Q \mid x \cap \{q_1, q_3\} \neq \emptyset\} = \{[q_1, q_3], [q_1], [q_0, q_1, q_2], [q_1, q_2], [q_3], [q_1, q_2, q_3], [q_2, q_3]\}$ Let

$$\begin{split} & [q_0] = A \\ & [q_1, q_3] = B \\ & [q_1] = C \\ & [q_2] = D \\ & [q_0, q_1, q_2] = E \\ & [q_1, q_2] = F \\ & [q_3] = G \\ & [q_1, q_2, q_3] = H \\ & [q_2, q_3] = I \\ & \emptyset = J \end{split}$$

The transition diagram for the DFA is given in figure 20.

Figure 19: M_{19}

State	Input	
	0	1
$[q_0]$	$[q_1, q_3]$	$[q_1]$
$[q_1, q_3]$	$[q_2]$	$[q_0, q_1, q_2]$
$[q_1]$	$[q_2]$	$[q_1, q_2]$
$[q_2]$	$[q_3]$	$[q_0]$
$[q_0, q_1, q_2]$	$[q_1, q_2, q_3]$	$[q_0, q_1, q_2]$
$[q_1, q_2]$	$[q_2,q_3]$	$[q_0, q_1, q_2]$
$[q_3]$	Ø	$[q_0]$
$[q_1, q_2, q_3]$	$[q_2, q_3]$	$[q_0, q_1, q_2]$
$[q_2,q_3]$	$[q_3]$	$[q_0]$
Ø	Ø	Ø

Table 3: δ_{20}

Figure 20: M_{20}

2.6 a) Here we apply the subset construction to an NFA_{ϵ}. Whenever a state *P* of the contructed DFA contains a state *q* (of the NFA_{ϵ}), all the states reachable from *q* by ϵ -transitions (in the NFA_{ϵ}) are also in *P*.

Table 4 gives the transition function δ_{21} of a DFA corresponding to the NFA_{ϵ} from Figure 7. The initial state is $\{q_0, q_1, q_2\}$. All the states are final except $\{q_3\}$.

State	Input		
	0	1	
$\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_1,q_3\}$	
$\{q_1, q_3\}$	$\{q_3\}$	$\{q_1\}$	
$\{q_1\}$	$\{q_3\}$	$\{q_1\}$	
$\{q_3\}$	$\{q_3\}$	$\{q_1\}$	
$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_1, q_3\}$	

Table 4: δ_{21}

b) The subset construction results in an DFA with reachable states $\{q_0, q_1, q_3, q_5, q_6, q_7, q_{10}\}, \{q_2, q_9, q_{10}\}, \{q_4, q_{10}\}, \emptyset, \{q_6, q_7, q_8, q_{10}\}, \{q_9\}$. The initial state is $\{q_0, q_1, q_3, q_5, q_6, q_7, q_{10}\}$. The final states are those containing q_{10} .