2 DFA, NFA, and NFA ϵ

2.1 Determine which of the strings below belong to the language $L\left(M_{1}\right)$ (the DFA is given in figure 1). Also give $L\left(M_{1}\right)$ in set notation.
a) 001
b) 001011011011
c) 00101101001

Figure 1: M_{1}
2.2 Determine which of the strings below belong to the language $L\left(M_{2}\right)$ (the NFA is given in figure 2). Also give $L\left(M_{2}\right)$ in set notation.
a) 11110101
b) 1111111
c) 101101101111
d) 10110010011
2.3 Determine which of the strings below belong to the language $L\left(M_{3}\right)$ (the NFA_{ϵ} is given in figure 3). Also give $L\left(M_{3}\right)$ in set notation.
a) 11111
b) 1101011
c) 1011100
d) 0101111
2.4 For each of the following languages, construct a DFA that accepts the language.
a) $L_{1}=\left\{x \in\{0,1\}^{*} \mid x\right.$ ends in 00$\}$
b) $L_{2}=\left\{x \in\{0,1\}^{*} \mid x=(01)^{n}, n \geq 0\right\}$
c) $L_{3}=\left\{x \in\{0,1\}^{*} \mid\right.$ every 0 is immediately followed by 1$\}$
2.5 Two automata M and M^{\prime} are equivalent if they accept the same language, i.e. $L(M)=L\left(M^{\prime}\right)$.

Figure 2: M_{2}

Figure 3: M_{3}

Figure 4: M_{4}
a) Given the NFA in figure 4 , construct an equivalent DFA.
b) Given the NFA in figure 5, construct an equivalent DFA.
c) Given the NFA in figure 6 , construct an equivalent DFA.

Figure 5: M_{5}

Figure 6: M_{6}
2.6 a) Given the NFA_{ϵ} in figure 7, construct an equivalent DFA.

Figure 7: M_{7}
b) Given the NFA_{ϵ} in figure 8, construct an equivalent DFA.

Figure 8: M_{8}
2.4 a) An example of a DFA M_{15} such that $L\left(M_{15}\right)=L_{1}$ is given in figure 15.

Figure 15: M_{15}
Specification of the states:
q_{0} : The last symbol read, if any, is 1 .
q_{1} : The last symbol read is 0 ; the last but one, if any, is 1 .
q_{2} : The last two symbols read are 00 .
b) An example of a DFA M_{16} such that $L\left(M_{16}\right)=L_{2}$ is given in figure 16 .

Figure 16: M_{16}
q_{0} : Any number (incl. 0) of 01:s read.
q_{1} : Any number (incl. 0) of 01:s followed by 0 read.
q_{2} : Something else read.
c) An example of a DFA M_{17} such that $L\left(M_{17}\right)=L_{4}$ is given in figure 17 .

Figure 17: M_{17}
q_{0} : The last symbol read, if any, is 1 ; any previous 0 is immediately followed by 1 .
q_{1} : The last symbol read is 0 , any previous 0 is immediately followed by 1 . $q_{2}: 00$ has been read.
2.5 Following [Hopcroft\&Ullman] we often use [] instead of $\}$ to denote a set of states which is a state of a DFA.
a) δ_{18} is given in table 1 .

State	Input	
	a	b
$\left[q_{0}\right]$	$\left[q_{0}, q_{1}\right]$	$\left[q_{0}\right]$
$\left[q_{0}, q_{1}\right]$	$\left[q_{0}, q_{1}\right]$	$\left[q_{0}, q_{2}\right]$
$\left[q_{0}, q_{2}\right]$	$\left[q_{0}, q_{1}, q_{2}\right]$	$\left[q_{0}\right]$
$\left[q_{0}, q_{1}, q_{2}\right]$	$\left[q_{0}, q_{1}, q_{2}\right]$	$\left[q_{0}, q_{2}\right]$

Table 1: δ_{18}
The new set of final states is $F^{\prime}=\left\{x \in 2^{Q} \mid x \cap\left\{q_{1}\right\} \neq \emptyset\right\}=\left\{\left[q_{0}, q_{1}\right],\left[q_{0}, q_{1}, q_{2}\right]\right\}$.
Let

$$
\begin{aligned}
& {\left[q_{0}\right]=A} \\
& {\left[q_{0}, q_{1}\right]=B} \\
& {\left[q_{0}, q_{2}\right]=C} \\
& {\left[q_{0}, q_{1}, q_{2}\right]=D}
\end{aligned}
$$

The transition diagram for the DFA is given in figure 18 .
b) δ_{19} is given in table 2.

The new set of final states is $F^{\prime}=\left\{x \in 2^{Q} \mid x \cap\left\{q_{3}\right\} \neq \emptyset\right\}=$
$\left\{\left[q_{0}, q_{3}\right],\left[q_{0}, q_{1}, q_{3}\right],\left[q_{0}, q_{2}, q_{3}\right],\left[q_{0}, q_{1}, q_{2}, q_{3}\right]\right\}$. Let

$$
\begin{aligned}
& {\left[q_{0}\right]=A} \\
& {\left[q_{0}, q_{1}\right]=B} \\
& {\left[q_{0}, q_{1}, q_{2}\right]=C} \\
& {\left[q_{0}, q_{2}\right]=D} \\
& {\left[q_{0}, q_{1}, q_{2}, q_{3}\right]=E}
\end{aligned}
$$

Figure 18: M_{18}

State	Input	
	0	1
$\left[q_{0}\right]$	$\left[q_{0}, q_{1}\right]$	$\left[q_{0}\right]$
$\left[q_{0}, q_{1}\right]$	$\left[q_{0}, q_{1}, q_{2}\right]$	$\left[q_{0}, q_{2}\right]$
$\left[q_{0}, q_{1}, q_{2}\right]$	$\left[q_{0}, q_{1}, q_{2}, q_{3}\right]$	$\left[q_{0}, q_{2}\right]$
$\left[q_{0}, q_{2}\right]$	$\left[q_{0}, q_{1}, q_{3}\right]$	$\left[q_{0}\right]$
$\left[q_{0}, q_{1}, q_{2}, q_{3}\right]$	$\left[q_{0}, q_{1}, q_{2}, q_{3}\right]$	$\left[q_{0}, q_{2}, q_{3}\right]$
$\left[q_{0}, q_{2}, q_{3}\right]$	$\left[q_{0}, q_{1}, q_{3}\right]$	$\left[q_{0}, q_{3}\right]$
$\left[q_{0}, q_{1}, q_{3}\right]$	$\left[q_{0}, q_{1}, q_{2}, q_{3}\right]$	$\left[q_{0}, q_{2}, q_{3}\right]$
$\left[q_{0}, q_{3}\right]$	$\left[q_{0}, q_{1}, q_{3}\right]$	$\left[q_{0}, q_{3}\right]$

Table 2: δ_{19}

$$
\begin{aligned}
& {\left[q_{0}, q_{2}, q_{3}\right]=F} \\
& {\left[q_{0}, q_{1}, q_{3}\right]=G} \\
& {\left[q_{0}, q_{3}\right]=H}
\end{aligned}
$$

The transition diagram for the DFA is given in figure 19.
c) δ_{20} is given in table 3 .

The new set of final states is $F^{\prime}=\left\{x \in 2^{Q} \mid x \cap\left\{q_{1}, q_{3}\right\} \neq \emptyset\right\}=$ $\left\{\left[q_{1}, q_{3}\right],\left[q_{1}\right],\left[q_{0}, q_{1}, q_{2}\right],\left[q_{1}, q_{2}\right],\left[q_{3}\right],\left[q_{1}, q_{2}, q_{3}\right],\left[q_{2}, q_{3}\right]\right\}$ Let

$$
\begin{aligned}
& {\left[q_{0}\right]=A} \\
& {\left[q_{1}, q_{3}\right]=B} \\
& {\left[q_{1}\right]=C} \\
& {\left[q_{2}\right]=D} \\
& {\left[q_{0}, q_{1}, q_{2}\right]=E} \\
& {\left[q_{1}, q_{2}\right]=F} \\
& {\left[q_{3}\right]=G} \\
& {\left[q_{1}, q_{2}, q_{3}\right]=H} \\
& {\left[q_{2}, q_{3}\right]=I} \\
& \emptyset=J
\end{aligned}
$$

The transition diagram for the DFA is given in figure 20.

Figure 19: M_{19}

State	Input	
	0	1
$\left[q_{0}\right]$	$\left[q_{1}, q_{3}\right]$	$\left[q_{1}\right]$
$\left[q_{1}, q_{3}\right]$	$\left[q_{2}\right]$	$\left[q_{0}, q_{1}, q_{2}\right]$
$\left[q_{1}\right]$	$\left[q_{2}\right]$	$\left[q_{1}, q_{2}\right]$
$\left[q_{2}\right]$	$\left[q_{3}\right]$	$\left[q_{0}\right]$
$\left[q_{0}, q_{1}, q_{2}\right]$	$\left[q_{1}, q_{2}, q_{3}\right]$	$\left[q_{0}, q_{1}, q_{2}\right]$
$\left[q_{1}, q_{2}\right]$	$\left[q_{2}, q_{3}\right]$	$\left[q_{0}, q_{1}, q_{2}\right]$
$\left[q_{3}\right]$	\emptyset	$\left[q_{0}\right]$
$\left[q_{1}, q_{2}, q_{3}\right]$	$\left[q_{2}, q_{3}\right]$	$\left[q_{0}, q_{1}, q_{2}\right]$
$\left[q_{2}, q_{3}\right]$	$\left[q_{3}\right]$	$\left[q_{0}\right]$
\emptyset	\emptyset	\emptyset

Table 3: δ_{20}

Figure 20: M_{20}
2.6 a) Here we apply the subset construction to an NFA_{ϵ}. Whenever a state P of the contructed DFA contains a state q (of the NFA_{ϵ}), all the states reachable from q by ϵ-transitions (in the NFA_{ϵ}) are also in P.
Table 4 gives the transition function δ_{21} of a DFA corresponding to the NFA_{ϵ} from Figure 7. The initial state is $\left\{q_{0}, q_{1}, q_{2}\right\}$. All the states are final except $\left\{q_{3}\right\}$.

State	Input	
	0	1
$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$	$\left\{q_{1}, q_{3}\right\}$
$\left\{q_{1}, q_{3}\right\}$	$\left\{q_{3}\right\}$	$\left\{q_{1}\right\}$
$\left\{q_{1}\right\}$	$\left\{q_{3}\right\}$	$\left\{q_{1}\right\}$
$\left\{q_{3}\right\}$	$\left\{q_{3}\right\}$	$\left\{q_{1}\right\}$
$\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$	$\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$	$\left\{q_{1}, q_{3}\right\}$

Table 4: δ_{21}
b) The subset construction results in an DFA with reachable states $\left\{q_{0}, q_{1}, q_{3}, q_{5}, q_{6}, q_{7}, q_{10}\right\},\left\{q_{2}, q_{9}, q_{10}\right\},\left\{q_{4}, q_{10}\right\}, \emptyset,\left\{q_{6}, q_{7}, q_{8}, q_{10}\right\},\left\{q_{9}\right\}$. The initial state is $\left\{q_{0}, q_{1}, q_{3}, q_{5}, q_{6}, q_{7}, q_{10}\right\}$. The final states are those containing q_{10}.

