In this exercise set we refer to two textbooks:

[Kozen] Dexter C. Kozen. Automata and Computability. Springer Verlag 1997.

[Hopcroft&Ullman] John E. Hopcroft and Jeffrey D. Ullman, *Introduction to Automata Theory, Languages and Computation*. Addison-Wesley 1979.

1 Basic Concepts

- **1.1** Let w be the string *abcde*.
 - a) Give all prefixes of w.
 - b) Give all suffixes of w.
- **1.2** Suppose $L_1 = \{carl, hugh, paul\}$ and $L_2 = \{smith, jones\}$. Enumerate the strings which belong to the language $L_3 = L_1L_2$ (i.e. $L_3 = \{xy \mid x \in L_1, y \in L_2\}$).
- **1.3** If L is a language, then L^n denotes the language which is obtained by concatenating L n times (i.e. $L^0 = \{\epsilon\}$ and for n > 0, $L^n = LL^{n-1}$). Furthermore, L^* denotes $\bigcup_{n=0}^{\infty} L^n$.

Let $L_1 = \{mor, far\}$ and $L_2 = \{s\}$. Give examples of strings in the language $(L_1^2 L_2)^* L_1 \cup L_1^2$.

1.4 The *depth* of a node v in a tree T is defined as follows. If v is the root node of T, then the depth of v is 0. Otherwise v belongs to a subtree T' of the root of T (i.e. T' is a tree such that the root of T is the parent of the root of T'), and the depth of v in T is defined to be one more than the depth of v in T'. As an example, the depth of the node c in the tree below is 2.

The *height* of a tree is the largest depth of a node in the tree. A tree is called a binary tree if every its node has either no children or exactly two children. (So the tree in the diagram is not binary). Suppose T is a binary tree of height k. Show that T has n nodes, where n satisfies the condition $2k + 1 \le n \le 2^{k+1} - 1$.

- **1.5** If Σ is an alphabet, then Σ^* denotes the language which comprises all strings which can be formed by using the symbols in Σ . For $x \in \Sigma^*$, let x^R denote x reversed and be defined recursively:
 - 1. If $x = \epsilon$, then $x^R = \epsilon$
 - 2. If x = ay for some $a \in \Sigma$ and $y \in \Sigma^*$, then $x^R = y^R a$

Let |x| denote the length of a string x. Give a recursive definition of the length of a string and then show $|x| = |x^R|$ for all strings $x \in \Sigma^*$.

- **1.6** The set of all subsets of a set A is called the power set of A. It is denoted by 2^{A} .
 - a) Give 2^{A} for $A = \{a, b, c\}$.
 - b) Show by induction that the number of elements in 2^A is 2^n if the number of elements in A is n.
- **1.7** Let Σ be an alphabet and $L \subseteq \Sigma^*$ a language. Consider the relation $R_L \subseteq \Sigma^* \times \Sigma^*$ defined by: xR_Ly if and only if for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$.
 - a) Show that R_L is an equivalence relation.
 - b) Give the equivalence classes of R_L for $L = \{(01)^n \mid n \ge 0\}$ and $\Sigma = \{0, 1\}$.
 - c) Give the equivalence classes of R_L for $L = \{0^n 1^n \mid n \ge 1\}$ and $\Sigma = \{0, 1\}$.
 - d) Give the equivalence classes of R_L for $L = \{0^n 10^m \mid n \ge 0, m \ge 0\}$ and $\Sigma = \{0, 1\}.$

If x is a string, then x^n denotes the concatenation of n x's. Parentheses are used for showing where a string begins and ends. They are omitted if the string consists of a single symbol. For example, $(01)^2$ is the string 0101 and $(01)^0$ is the empty string. Relation R_L is denoted in [Kozen] by \equiv_L .

Suggested Solutions

1.4 Let IH(k) be: 'the number of nodes n in a binary tree of height k satisfies the condition $2k+1 \le n \le 2^{k+1}-1$ '. What we have to show is thus that IH(k) holds for all $k \ge 0$. This is shown by induction on k.

Basis IH(0) holds.

k = 0 implies that the number of nodes is 1, i.e. n = 1. $2 \cdot 0 + 1 = 1 = 2^{0+1} - 1$.

Inductive hypothesis Suppose IH(k) holds for some $k \ge 0$.

Inductive step Show that IH(k+1) then holds.

Consider a binary tree of height k + 1:

One of the subtrees T_1 and T_2 must then be of height k, otherwise the height of T would not be k+1. (The height of the other subtree is $\leq k$). Let n_1, n_2 be the numbers of nodes of T_1 and T_2 , respectively.

- 1. By the inductive assumption, $n_1 \leq 2^{k+1} 1$ and $n_2 \leq 2^{k+1} 1$. Thus the total number of nodes in the tree is $n = 1 + n_1 + n_2 \leq 1 + 2(2^{k+1} 1) = 2^{(k+1)+1} 1$.
- 2. By the inductive assumption, the subtree of height k has $n_i \ge 2k + 1$ nodes. The other has $n_j \ge 1$ nodes. Thus the total number of nodes in the tree is $n = 1 + n_i + n_j \ge 1 + (2k + 1) + 1 = 2(k + 1) + 1$.

1 and 2 imply that the number of nodes n in the tree satisfies $2(k+1)+1 \le n \le 2^{(k+1)+1}-1$, i.e. IH(k+1) holds.

By mathematical induction IH(k) holds for all $k \ge 0$.

1.5 The length of a string x, |x|, can be defined recursively as follows.

1. If $x = \epsilon$, then |x| = 0.

2. If x = ay for some $a \in \Sigma$ and $y \in \Sigma^*$, then |x| = 1 + |y|

Let IH(k) be: |x| = k if and only if $|x^{R}| = k$, i.e. $|x| = |x^{R}|$. Show that IH(k) holds for all $k \ge 0$.

Basis IH(0) holds. $|x| = 0 \Leftrightarrow x = \epsilon \Leftrightarrow x^R = \epsilon \Leftrightarrow |x^R| = 0$

Inductive hypothesis Suppose IH(k) holds for some $k \ge 0$.

Inductive step Show that IH(k+1) then holds.

 $|x| = k + 1 \Leftrightarrow x = ay$ and |y| = k for some $a \in \Sigma$ and $y \in \Sigma^*$. The induction hypothesis implies $|y^R| = k$ and thus we have $|x^R| = |y^R a| = k + 1$.

What is missing? From the definition of $|\cdot|$ above, it does not follow immediately that the equality $|y^R a| = k + 1$ really holds. We show this again by induction.

Let IH'(k) be: 'if |x| = k then |xa| = k + 1, for any $x \in \Sigma^*$ and $a \in \Sigma'$.

Basis IH'(0) holds.

If |x| = 0, then $x = \epsilon$. Thus |xa| = |a| = 1.

Inductive hypothesis Suppose IH'(k) holds for some $k \ge 0$.

Inductive step Show that IH'(k+1) then holds.

If |y| = k + 1 then y = bx, where |x| = k. So ya = bxa. By the assumption, |xa| = k + 1. Hence |by| = |bxa| = k + 2 by the definition of $|\cdot|$.

- **1.7** a) In order to show that R_L is an equivalence relation, it must be shown that R_L is reflexive, symmetric and transitive.
 - reflexive For all $x \in \Sigma^*$, show xR_Lx .

Choose an arbitrary string $x \in \Sigma^*$. Then it is obviously true that for all $z \in \Sigma^* xz \in L \Leftrightarrow xz \in L$. Thus xR_Lx .

symmetric For all $x, y \in \Sigma^*$, show $xR_L y \Rightarrow yR_L x$. Choose $x, y \in \Sigma^*$ such that $xR_L y$. $xR_L y$ iff for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$. We conclude that for all $z \in \Sigma^*$, $yz \in L \Leftrightarrow xz \in L$, i.e. $yR_L x$.

transitive For all $x, y, w \in \Sigma^*$, show $xR_L y \wedge yR_L w \Rightarrow xR_L w$. Choose $x, y, w \in \Sigma^*$ such that $xR_L y$ and $yR_L w$, and choose $z \in \Sigma^*$ arbitrary. Suppose $xz \in L$. $xR_L y$ implies $yz \in L$, which in turn implies $wz \in L$. Suppose instead $xz \notin L$. $xR_L y$ implies $yz \notin L$, which in turn implies $wz \notin L$. Thus we may conclude $xz \in L \Leftrightarrow wz \in L$, i.e. $xR_L w$.

b) The equivalence classes constitute a partitioning of the set on which the equivalence relation is defined, here Σ^* . We start by finding the equivalence class for some suitable string, e.g. ϵ . If we find that $[\epsilon]$, the equivalence class for ϵ , does not cover Σ^* (i.e., $[\epsilon]$ is a proper subset of Σ^*), we continue by choosing a new string which does not belong to $[\epsilon]$. This string is a representative of a new equivalence class. We determine this equivalence class and check whether the union of all the equivalence classes obtained thus far is equal to Σ^* . If not, a new representative is chosen, its equivalence class determined and so forth until all classes have been found.

How do we determine the equivalence class for a string x? A string y is related to x, xR_Ly , if and only if for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$. The condition $xz \in L \Leftrightarrow yz \in L$ can be restated as $xz \in L \Rightarrow yz \in L$ and $xz \notin L \Rightarrow yz \notin L$. Given a string x, we first determine what z should look like in order that $xz \in L$. Since $yz \in L$ should hold, the forms z may take constrain the strings y which may be related to x. We then proceed to check the second half of the condition. i.e. $xz \notin L \Rightarrow yz \notin L$. For those z which satisfy $xz \notin L$, it should also be the case that $yz \notin L$. This may mean that some of the strings we found earlier do not qualify. The remaining strings thus constitute [x], the equivalence class for x.

- 1. $[\epsilon]$ $x = \epsilon$ and $xz = z \in L$ implies $z = (01)^n$, $n \ge 0$. If $z = (01)^n$ and $yz \in L$, it must be the case that $y = (01)^m$, $m \ge 0$ since $yz = (01)^m (01)^n = (01)^{m+n}$. $x = \epsilon$ and $xz = z \notin L$ implies $z \ne (01)^n$, $n \ge 0$. If $z \ne (01)^n$ and
 - $x = \epsilon$ and $xz = z \notin L$ implies $z \neq (01)^n$, $n \ge 0$. If $z \neq (01)^n$ and $y = (01)^m$, then $yz \notin L$ holds. Thus $[\epsilon] = \{(01)^m \mid m \ge 0\}$.
- 2. [0]
 - $0 \notin [\epsilon]$. x = 0 and $xz = 0z \in L$ implies $z = 1(01)^n$, $n \ge 0$. If $z = 1(01)^n$ and $yz \in L$, it must be the case that $y = (01)^m 0$ since $yz = (01)^m 01(01)^n = (01)^{m+n+1}$.
 - x = 0 and $xz = 0z \notin L$ implies $z \neq 1(01)^n$, $n \ge 0$. If $z \neq 1(01)^n$ and $y = (01)^m 0$, then $yz \notin L$ holds. Thus $[0] = \{(01)^m 0 \mid m \ge 0\}$
- 3. [1]

 $1 \notin [\epsilon] \cup [0]$. x = 1 implies that $1z \notin L$ for an arbitrary choice of $z \in \Sigma^*$. This means that all strings y in [1] must be such that $yz \notin L$ holds for an arbitrary chosen string z. For each $y \in \Sigma^* - ([\epsilon] \cup [0])$ (i.e. those strings which does not belong to $[\epsilon]$ or [0]) it is the case that $yz \notin L$ regardless of how z is chosen. Thus $[1] = \Sigma^* - ([\epsilon] \cup [0])$.

- c) Here we get an infinite number of equivalence classes since each string of the form 0^n , $n \ge 0$ is only related to itself. This yields the following classes:
 - 1. $[0^n] = \{0^n\}, n \ge 0$
 - 2. $[01] = \{0^n 1^n \mid n \ge 1\}$
 - 3. $[0^{k+1}1] = \{0^{k+n}1^n \mid n \ge 1\}, k \ge 1$
 - 4. $[1] = \Sigma^* ([01] \cup (\bigcup_{n=0}^{\infty} [0^n]) \cup (\bigcup_{n=2}^{\infty} [0^n 1])$
- d) 1. $[\epsilon] = \{0^n \mid n \ge 0\}$
 - 2. $[1] = \{0^n 1 0^m \mid n \ge 0, m \ge 0\}$
 - 3. $[11] = \Sigma^* ([\epsilon] \cup [1])$