In this exercise set we refer to two textbooks:
[Kozen] Dexter C. Kozen. Automata and Computability. Springer Verlag 1997.
[Hopcroft\&Ullman] John E. Hopcroft and Jeffrey D. Ullman, Introduction to Automata Theory, Languages and Computation. Addison-Wesley 1979.

1 Basic Concepts

1.1 Let w be the string $a b c d e$.
a) Give all prefixes of w.
b) Give all suffixes of w.
1.2 Suppose $L_{1}=\{$ carl, hugh, paul $\}$ and $L_{2}=\{$ smith, jones $\}$. Enumerate the strings which belong to the language $L_{3}=L_{1} L_{2}$ (i.e. $L_{3}=\left\{x y \mid x \in L_{1}, y \in L_{2}\right\}$).
1.3 If L is a language, then L^{n} denotes the language which is obtained by concatenating $L n$ times (i.e. $L^{0}=\{\epsilon\}$ and for $n>0, L^{n}=L L^{n-1}$). Furthermore, L^{*} denotes $\cup_{n=0}^{\infty} L^{n}$.
Let $L_{1}=\{$ mor, far $\}$ and $L_{2}=\{s\}$. Give examples of strings in the language $\left(L_{1}^{2} L_{2}\right)^{*} L_{1} \cup L_{1}^{2}$.
1.4 The depth of a node v in a tree T is defined as follows. If v is the root node of T, then the depth of v is 0 . Otherwise v belongs to a subtree T^{\prime} of the root of T (i.e. T^{\prime} is a tree such that the root of T is the parent of the root of T^{\prime}), and the depth of v in T is defined to be one more than the depth of v in T^{\prime}. As an example, the depth of the node c in the tree below is 2 .

The height of a tree is the largest depth of a node in the tree. A tree is called a binary tree if every its node has either no children or exactly two children. (So the tree in the diagram is not binary). Suppose T is a binary tree of height k. Show that T has n nodes, where n satisfies the condition $2 k+1 \leq n \leq 2^{k+1}-1$.
1.5 If Σ is an alphabet, then Σ^{*} denotes the language which comprises all strings which can be formed by using the symbols in Σ. For $x \in \Sigma^{*}$, let x^{R} denote x reversed and be defined recursively:

1. If $x=\epsilon$, then $x^{R}=\epsilon$
2. If $x=a y$ for some $a \in \Sigma$ and $y \in \Sigma^{*}$, then $x^{R}=y^{R} a$

Let $|x|$ denote the length of a string x. Give a recursive definition of the length of a string and then show $|x|=\left|x^{R}\right|$ for all strings $x \in \Sigma^{*}$.
1.6 The set of all subsets of a set A is called the power set of A. It is denoted by 2^{A}.
a) Give 2^{A} for $A=\{a, b, c\}$.
b) Show by induction that the number of elements in 2^{A} is 2^{n} if the number of elements in A is n.
1.7 Let Σ be an alphabet and $L \subseteq \Sigma^{*}$ a language. Consider the relation $R_{L} \subseteq \Sigma^{*} \times \Sigma^{*}$ defined by: $x R_{L} y$ if and only if for all $z \in \Sigma^{*}, x z \in L \Longleftrightarrow y z \in L$.
a) Show that R_{L} is an equivalence relation.
b) Give the equivalence classes of R_{L} for $L=\left\{(01)^{n} \mid n \geq 0\right\}$ and $\Sigma=\{0,1\}$.
c) Give the equivalence classes of R_{L} for $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$ and $\Sigma=\{0,1\}$.
d) Give the equivalence classes of R_{L} for $L=\left\{0^{n} 10^{m} \mid n \geq 0, m \geq 0\right\}$ and $\Sigma=\{0,1\}$.
If x is a string, then x^{n} denotes the concatenation of $n x$'s. Parentheses are used for showing where a string begins and ends. They are omitted if the string consists of a single symbol. For example, $(01)^{2}$ is the string 0101 and $(01)^{0}$ is the empty string. Relation R_{L} is denoted in [Kozen] by \equiv_{L}.

Suggested Solutions

1.4 Let $I H(k)$ be: 'the number of nodes n in a binary tree of height k satisfies the condition $2 k+1 \leq n \leq 2^{k+1}-1^{\prime}$. What we have to show is thus that $I H(k)$ holds for all $k \geq 0$. This is shown by induction on k.

Basis $I H(0)$ holds.
$k=0$ implies that the number of nodes is 1, i.e. $n=1 \cdot 2 \cdot 0+1=1=2^{0+1}-1$.
Inductive hypothesis Suppose $I H(k)$ holds for some $k \geq 0$.
Inductive step Show that $I H(k+1)$ then holds.
Consider a binary tree of height $k+1$:

One of the subtrees T_{1} and T_{2} must then be of height k, otherwise the height of T would not be $k+1$. (The height of the other subtree is $\leq k$). Let n_{1}, n_{2} be the numbers of nodes of T_{1} and T_{2}, respectively.

1. By the inductive assumption, $n_{1} \leq 2^{k+1}-1$ and $n_{2} \leq 2^{k+1}-1$. Thus the total number of nodes in the tree is $n=1+n_{1}+n_{2} \leq 1+2\left(2^{k+1}-1\right)=$ $2^{(k+1)+1}-1$.
2. By the inductive assumption, the subtree of height k has $n_{i} \geq 2 k+1$ nodes. The other has $n_{j} \geq 1$ nodes. Thus the total number of nodes in the tree is $n=1+n_{i}+n_{j} \geq 1+(2 k+1)+1=2(k+1)+1$.
1 and 2 imply that the number of nodes n in the tree satisfies $2(k+1)+1 \leq$ $n \leq 2^{(k+1)+1}-1$, i.e. $I H(k+1)$ holds.

By mathematical induction $I H(k)$ holds for all $k \geq 0$.
1.5 The length of a string $x,|x|$, can be defined recursively as follows.

1. If $x=\epsilon$, then $|x|=0$.
2. If $x=a y$ for some $a \in \Sigma$ and $y \in \Sigma^{*}$, then $|x|=1+|y|$

Let $I H(k)$ be: ' $|x|=k$ if and only if $\left|x^{R}\right|=k$, i.e. $|x|=\left|x^{R}\right|$ '. Show that $I H(k)$ holds for all $k \geq 0$.

Basis $I H(0)$ holds.

$$
|x|=0 \Leftrightarrow x=\epsilon \Leftrightarrow x^{R}=\epsilon \Leftrightarrow\left|x^{R}\right|=0
$$

Inductive hypothesis Suppose $I H(k)$ holds for some $k \geq 0$.

Inductive step Show that $I H(k+1)$ then holds.
$|x|=k+1 \Leftrightarrow x=a y$ and $|y|=k$ for some $a \in \Sigma$ and $y \in \Sigma^{*}$. The induction hypothesis implies $\left|y^{R}\right|=k$ and thus we have $\left|x^{R}\right|=\left|y^{R} a\right|=k+1$.

What is missing? From the definition of $|\cdot|$ above, it does not follow immediately that the equality $\left|y^{R} a\right|=k+1$ really holds. We show this again by induction.
Let $I H^{\prime}(k)$ be: 'if $|x|=k$ then $|x a|=k+1$, for any $x \in \Sigma^{*}$ and $a \in \Sigma$ '.
Basis $I H^{\prime}(0)$ holds.
If $|x|=0$, then $x=\epsilon$. Thus $|x a|=|a|=1$.
Inductive hypothesis Suppose $I H^{\prime}(k)$ holds for some $k \geq 0$.
Inductive step Show that $I H^{\prime}(k+1)$ then holds.
If $|y|=k+1$ then $y=b x$, where $|x|=k$. So $y a=b x a$. By the assumption,
$|x a|=k+1$. Hence $|b y|=|b x a|=k+2$ by the definition of $|\cdot|$.
1.7 a) In order to show that R_{L} is an equivalence relation, it must be shown that R_{L} is reflexive, symmetric and transitive.
reflexive For all $x \in \Sigma^{*}$, show $x R_{L} x$.
Choose an arbitrary string $x \in \Sigma^{*}$. Then it is obviously true that for all $z \in \Sigma^{*} x z \in L \Leftrightarrow x z \in L$. Thus $x R_{L} x$.
symmetric For all $x, y \in \Sigma^{*}$, show $x R_{L} y \Rightarrow y R_{L} x$.
Choose $x, y \in \Sigma^{*}$ such that $x R_{L} y . x R_{L} y$ iff for all $z \in \Sigma^{*}, x z \in L \Leftrightarrow$ $y z \in L$. We conclude that for all $z \in \Sigma^{*}, y z \in L \Leftrightarrow x z \in L$, i.e. $y R_{L} x$.
transitive For all $x, y, w \in \Sigma^{*}$, show $x R_{L} y \wedge y R_{L} w \Rightarrow x R_{L} w$.
Choose $x, y, w \in \Sigma^{*}$ such that $x R_{L} y$ and $y R_{L} w$, and choose $z \in \Sigma^{*}$ arbitrary. Suppose $x z \in L . x R_{L} y$ implies $y z \in L$, which in turn implies $w z \in L$. Suppose instead $x z \notin L . x R_{L} y$ implies $y z \notin L$, which in turn implies $w z \notin L$. Thus we may conclude $x z \in L \Leftrightarrow w z \in L$, i.e. $x R_{L} w$.
b) The equivalence classes constitute a partitioning of the set on which the equivalence relation is defined, here Σ^{*}. We start by finding the equivalence class for some suitable string, e.g. ϵ. If we find that $[\epsilon]$, the equivalence class for ϵ, does not cover Σ^{*} (i.e., $[\epsilon]$ is a proper subset of Σ^{*}), we continue by choosing a new string which does not belong to $[\epsilon]$. This string is a representative of a new equivalence class. We determine this equivalence class and check whether the union of all the equivalence classes obtained thus far is equal to Σ^{*}. If not, a new representative is chosen, its equivalence class determined and so forth until all classes have been found.
How do we determine the equivalence class for a string x ? A string y is related to $x, x R_{L} y$, if and only if for all $z \in \Sigma^{*}, x z \in L \Leftrightarrow y z \in L$. The condition $x z \in L \Leftrightarrow y z \in L$ can be restated as $x z \in L \Rightarrow y z \in L$ and $x z \notin L \Rightarrow y z \notin L$. Given a string x, we first determine what z should look like in order that $x z \in L$. Since $y z \in L$ should hold, the forms z may take constrain the strings y which may be related to x. We then proceed to check the second half of the condition. i.e. $x z \notin L \Rightarrow y z \notin L$. For those z which satisfy $x z \notin L$, it should also be the case that $y z \notin L$. This may mean that
some of the strings we found earlier do not qualify. The remaining strings thus constitute $[x]$, the equivalence class for x.

1. $[\epsilon]$
$x=\epsilon$ and $x z=z \in L$ implies $z=(01)^{n}, n \geq 0$. If $z=(01)^{n}$ and $y z \in L$, it must be the case that $y=(01)^{m}, m \geq 0$ since $y z=(01)^{m}(01)^{n}=$ $(01)^{m+n}$.
$x=\epsilon$ and $x z=z \notin L$ implies $z \neq(01)^{n}, n \geq 0$. If $z \neq(01)^{n}$ and $y=(01)^{m}$, then $y z \notin L$ holds. Thus $[\epsilon]=\left\{(01)^{m} \mid m \geq 0\right\}$.
2. [0]
$0 \notin[\epsilon] . \quad x=0$ and $x z=0 z \in L$ implies $z=1(01)^{n}, n \geq 0$. If $z=1(01)^{n}$ and $y z \in L$, it must be the case that $y=(01)^{m} 0$ since $y z=(01)^{m} 01(01)^{n}=(01)^{m+n+1}$.
$x=0$ and $x z=0 z \notin L$ implies $z \neq 1(01)^{n}, n \geq 0$. If $z \neq 1(01)^{n}$ and $y=(01)^{m} 0$, then $y z \notin L$ holds. Thus $[0]=\left\{(01)^{m} 0 \mid m \geq 0\right\}$
3. [1]
$1 \notin[\epsilon] \cup[0] . x=1$ implies that $1 z \notin L$ for an arbitrary choice of $z \in \Sigma^{*}$. This means that all strings y in [1] must be such that $y z \notin L$ holds for an arbitrary chosen string z. For each $y \in \Sigma^{*}-([\epsilon] \cup[0])$ (i.e. those strings which does not belong to $[\epsilon]$ or $[0])$ it is the case that $y z \notin L$ regardless of how z is chosen. Thus $[1]=\Sigma^{*}-([\epsilon] \cup[0])$.
c) Here we get an infinite number of equivalence classes since each string of the form $0^{n}, n \geq 0$ is only related to itself. This yields the following classes:
4. $\left[0^{n}\right]=\left\{0^{n}\right\}, n \geq 0$
5. $[01]=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$
6. $\left[0^{k+1} 1\right]=\left\{0^{k+n} 1^{n} \mid n \geq 1\right\}, k \geq 1$
7. $[1]=\Sigma^{*}-\left([01] \cup\left(\cup_{n=0}^{\infty}\left[0^{n}\right]\right) \cup\left(\cup_{n=2}^{\infty}\left[0^{n} 1\right]\right)\right.$
d) 1. $[\epsilon]=\left\{0^{n} \mid n \geq 0\right\}$
8. $[1]=\left\{0^{n} 10^{m} \mid n \geq 0, m \geq 0\right\}$
9. $[11]=\Sigma^{*}-([\epsilon] \cup[1])$
