
Turing Machines 17

8 Turing Machines

8.1 Construct Turing machines for solving each of the following problems:

a) Accept the language {0m1n | 0 ≤ m ≤ n}.

b) Accept the language {x ∈ {a, b}∗ | x contains the same number of a’s and b’s}.

c) If the string 1n is placed on the tape, the TM generates the string (01)n.

d) If the string 1m♯1n is placed on the tape, the TM generates the string 1mn

(i.e. multiplication).

8.2 For the following statements, indicate whether they are true or false and give a
justification:

a) The intersection of two recursive languages is recursive.

b) The union of two r.e. (recursively enumerable) languages is r.e..

c) If the complement ∼L of a r.e. language L is recursive, then L is recursive.

d) Let L1 and L2 be r.e. languages. Then L1L2 is r.e..

Suggested Solutions: Turing machines 49

8.2 a) Assume that we have two recursive languages L1, L2. We show that L1 ∩L2

is recursive.

L1, L2 are defined by some total TM’s (Turing machines), L1 = L(M1) and
L2 = L(M2). We can construct a TM M that, on an input string x, behaves
in the following way:

• M simulates step-by-step the computation of M1 on input x until M1

halts,

• if M1 rejects x then M halts and rejects,

• otherwise M simulates the computation of M2 on input x,

• if M2 accepts x then M halts and accepts,

• otherwise M halts and rejects.

We need x available when starting simulation of M2; for this purpose a copy
of x can be kept at the beginning of the tape. Obviously, x is accepted by M

iff it is accepted by M1 and by M2. Thus L(M) = L(M1) ∩ L(M2). Notice
that if M1 and M2 are total TM’s then M is total, thus L(M) is recursive.

b) Assume that we have two r.e. languages L1, L2 defined by two TM’s; L1 =
L(M1) and L2 = L(M2). We show that L1 ∪ L2 is r.e..

We can construct a TM M that simulates the computations of M1 and M2

on the same input string “in parallel”, performing one step of M1, one step
of M2, and so on. M can be a two tape TM, one tape would be the tape
of M1, the other of M2. If one of the simulated machines accepts, then M

accepts. Clearly, L(M) = L(M1) ∪ L(M2).

Notice that we cannot first perform the computation of M1 and then of M2;
the first computation may not halt and thus the computation of M2 may
never begin.

c) Construct a total TM for L out of TM’s for L and ∼L. The construction is
similar to the previous one.

d) A TM M for L1L2 would first split the input string x into two (x = yizi)
in all |x| + 1 possible ways (i = 1, . . . , |x| + 1). Then for each of them M

checks whether yi ∈ L1 and zi ∈ L2. The checks have to be done in parallel.1

M accepts when some pair of checks succeeds. (This implies that x ∈ L1L2.
Conversely, if x ∈ L1L2 then at least one pair of checks succeeds.)

We cannot use 2(|x| + 1) tapes, as the number of tapes has to be fixed
(independent of x). So we split a tape into 2(|x| + 1) sections, each section
would play the role of the tape of a TM performing one of the checks. If
the TM needs more tape cells than assigned, the tape section is enlarged
by shifting all the tape sections that are to the right of the given one. The
second tape of M would be used for bookkeeping (which section is dealt
with now, etc.).

1More precisely, for a given splitting x = x1x2 the two checks for x1 ∈ L1 and x2 ∈ L2 can be

performed sequentially.

