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4 Regular Languages

4.1 Let Σ = {0, 1} and Γ = {a, b} be two alphabets. Suppose h : Σ → Γ∗ is a
homomorphism such that:

h(0) = aaab
h(1) = bbba

a) What is h(01)?

b) What is h(101)?

c) Suppose L ⊆ Σ∗ is the language 001∗. Give a regular expression for h(L).

4.2 Let Σ = {0, 1} and Γ = {a, b} be two alphabets. Suppose h : Σ → Γ∗ is a
homomorphism such that:

h(0) = aa
h(1) = aba

Suppose L ⊆ Γ∗ is the language (ab + ba)∗a. Give a minimal DFA which accepts
h−1(L) = {x ∈ Σ∗ | h(x) ∈ L}.

4.3 Suppose L ⊆ {a, b}∗ is the language (ab)∗ + a(ba + a)∗. Give a minimal DFA
which accepts the language L = {x ∈ {a, b}∗ | x /∈ L}.

4.4 Suppose L1 ⊆ {0, 1}∗ and L2 ⊆ {0, 1}∗ are the languages (0 + 11)∗ and 11∗0
respectively. Give a minimal DFA which accepts the language L1 ∩ L2.

4.5 Show, by using the pumping lemma, that the following languages are not regular.

a) L1 = {0n1n | n ≥ 0}

b) L2 = {x ∈ {0, 1}∗ | x = xR}
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4.2 Since L ⊆ Γ∗ is a regular language, there exists a DFA M26 = (Q, Γ, δ26, q0, F )
which accepts L (see figure 26). (Notice that there exist simpler DFA’s for L.)
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Figure 26: M26

A new DFA M ′, accepting h−1(L), may now be constructed from M26 as follows:
Let M ′ = (Q, Σ, δ27, q0, F ) = ({q0, q1, q2, q3, q4, q5}, {0, 1}, δ27, q0, {q2}) where δ27

is defined by δ27(q, x) = δ26(q, h(x)) for q ∈ Q and x ∈ {0, 1}, e.g. δ27(q0, 0) =
δ26(q0, h(0)) = δ26(q0, aa) = q5 (see table 6).

State Input

0 1
q0 q5 q2

q1 q5 q2

q2 q5 q5

q3 q2 q4

q4 q5 q2

q5 q5 q5

Table 6: δ27

The only states which can be reached from q0 are q0, q2, and q5. Thus the states
q1, q3, and q4 may be removed from M ′. The result is the DFA M27, which accepts
h−1(L) and which can be shown to be minimal (see figure 27).

4.3 L is the language (ab)∗ + a(ba + a)∗. Let M = (Q, {a, b}, δ, q0, F ) be a DFA such
that L(M) = L. Then the DFA M ′ = (Q, {a, b}, δ, q0, F

′), where F ′ = Q − F ,
accepts L. A minimal DFA M28 is given in figure 28.

Note that if M is minimal then M ′ is minimal too. This is because the equivalence
relation ≡... is the same for both languages (≡L = ≡L ).

4.4 L1 = (0 + 11)∗ and L2 = 11∗0. DFAs M29 = (Q1, {0, 1}, δ1, q1,0, F1) accepting L1

and M30 = (Q2, {0, 1}, δ2, q2,0, F2) accepting L2 are given in figure 29 and figure 30
respectively.
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Figure 27: M27
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Figure 28: M28
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Figure 29: M29
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A DFA M accepting L1∩L2 may now be constructed from M29 and M30 as follows:
Let M = (Q1 ×Q2, {0, 1}, δ7, 〈q1,0, q2,0〉, F1 × F2). The states of M are thus pairs
where the first component is a state of M1 and the second component is a state in
M2. The transition function δ7 is then defined by δ7(〈q, r〉, x) = 〈δ1(q, x), δ2(r, x)〉
for q ∈ Q1, r ∈ Q2 and x ∈ {0, 1} (see table 7).

State Input

0 1
〈q1,0, q2,0〉 〈q1,0, q2,3〉 〈q1,1, q2,1〉
〈q1,0, q2,3〉 〈q1,0, q2,3〉 〈q1,1, q2,3〉
〈q1,1, q2,1〉 〈q1,2, q2,2〉 〈q1,0, q2,1〉
〈q1,1, q2,3〉 〈q1,2, q2,3〉 〈q1,0, q2,3〉
〈q1,2, q2,2〉 〈q1,2, q2,3〉 〈q1,2, q2,3〉
〈q1,0, q2,1〉 〈q1,0, q2,2〉 〈q1,1, q2,1〉
〈q1,2, q2,3〉 〈q1,2, q2,3〉 〈q1,2, q2,3〉
〈q1,0, q2,2〉 〈q1,0, q2,3〉 〈q1,1, q2,3〉

Table 7: δ7

Minimization of M (and renaming of states) gives M31 of figure 31.
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Figure 31: M31

4.5 The pumping lemma: If L is a regular language, then there exists a constant n
such that z ∈ L and |z| ≥ n implies that there exist strings u, v and w satisfying
the following conditions:

1. z = uvw

2. |v| ≥ 1 and |uv| ≤ n

3. uviw ∈ L for all i ≥ 0

In order to show that a language is not regular, we first assume the opposite to
be true, and then use the pumping lemma to show that our assumption leads to
a contradiction.
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a) Suppose L1 is a regular language and let n be the constant that then exists
according to the lemma. Consider the string z = 0n1n. We have z ∈ L1

and |z| = 2n ≥ n, which implies that there should be strings u, v and w
satisfying the above conditions. If we can show that there in fact are no
such strings, i.e. that regardless of how u, v and w are chosen, uviw /∈ L1

for some i, then we have obtained our contradictions.

z = uvw and |uv| ≤ n implies that the strings u and v can only consist of
0, i.e. u = 0k and v = 0l where k + l ≤ n. This means that we must have
w = 0n−k−l1n.

Now consider uv2w = 0n+l1n. If |v| ≥ 1, then this implies l ≥ 1, i.e.
uv2w /∈ L2. Thus we have a contradiction.

b) Suppose L2 is a regular language and let n be the constant in the pumping
lemma. Then consider z = 0n10n; z ∈ L2 and |z| = 2n + 1 ≥ n. z = uvw
and |uv| ≤ n implies that u = 0k, v = 0l (k + l ≤ n) and w = 0n−k−l10n.

Now consider uv0w = uw = 0n−l10n. Since |v| ≥ 1 ⇒ l ≥ 1, we have
n − l < n, i.e. uv0w = uw /∈ L2. Contradiction!


