
Basic Concepts 1

In this exercise set we refer to two textbooks:

[Kozen] Dexter C. Kozen. Automata and Computability. Springer Verlag 1997.

[Hopcroft&Ullman] John E. Hopcroft and Jeffrey D. Ullman, Introduction to

Automata Theory, Languages and Computation. Addison-Wesley 1979.

1 Basic Concepts

1.1 Let w be the string abcde.

a) Give all prefixes of w.

b) Give all suffixes of w.

1.2 Suppose L1 = {carl, hugh, paul} and L2 = {smith, jones}. Enumerate the
strings which belong to the language L3 = L1L2 (i.e. L3 = {xy | x ∈ L1, y ∈ L2}).

1.3 If L is a language, then Ln denotes the language which is obtained by concate-
nating L n times (i.e. L0 = {ǫ} and for n > 0, Ln = LLn−1). Furthermore, L∗

denotes ∪∞

n=0L
n.

Let L1 = {mor , far} and L2 = {s}. Give examples of strings in the language
(L2

1L2)
∗L1 ∪ L2

1.

1.4 The depth of a node v in a tree T is defined as follows. If v is the root node of
T , then the depth of v is 0. Otherwise v belongs to a subtree T ′ of the root of
T (i.e. T ′ is a tree such that the root of T is the parent of the root of T ′), and
the depth of v in T is defined to be one more than the depth of v in T ′. As an
example, the depth of the node c in the tree below is 2.

a

b

c

The height of a tree is the largest depth of a node in the tree. A tree is called a
binary tree if every its node has either no children or exactly two children. (So
the tree in the diagram is not binary). Suppose T is a binary tree of height k.
Show that T has n nodes, where n satisfies the condition 2k + 1 ≤ n ≤ 2k+1 − 1.

1.5 If Σ is an alphabet, then Σ∗ denotes the language which comprises all strings
which can be formed by using the symbols in Σ. For x ∈ Σ∗, let xR denote x
reversed and be defined recursively:

1. If x = ǫ, then xR = ǫ

2. If x = ay for some a ∈ Σ and y ∈ Σ∗, then xR = yRa
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Let |x| denote the length of a string x. Give a recursive definition of the length
of a string and then show |x| = |xR| for all strings x ∈ Σ∗.

1.6 The set of all subsets of a set A is called the power set of A. It is denoted by 2A.

a) Give 2A for A = {a, b, c}.

b) Show by induction that the number of elements in 2A is 2n if the number of
elements in A is n.

1.7 Let Σ be an alphabet and L ⊆ Σ∗ a language. Consider the relation RL ⊆ Σ∗×Σ∗

defined by: xRLy if and only if for all z ∈ Σ∗, xz ∈ L ⇐⇒ yz ∈ L.

a) Show that RL is an equivalence relation.

b) Give the equivalence classes of RL for L = {(01)n | n ≥ 0} and Σ = {0, 1}.

c) Give the equivalence classes of RL for L = {0n1n | n ≥ 1} and Σ = {0, 1}.

d) Give the equivalence classes of RL for L = {0n10m | n ≥ 0, m ≥ 0} and
Σ = {0, 1}.

If x is a string, then xn denotes the concatenation of n x’s. Parentheses are
used for showing where a string begins and ends. They are omitted if the string
consists of a single symbol. For example, (01)2 is the string 0101 and (01)0 is
the empty string. Relation RL is denoted in [Kozen] by ≡L.
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Suggested Solutions

1.4 Let IH (k) be: ‘the number of nodes n in a binary tree of height k satisfies the
condition 2k+1 ≤ n ≤ 2k+1−1’. What we have to show is thus that IH (k) holds
for all k ≥ 0. This is shown by induction on k.

Basis IH (0) holds.
k = 0 implies that the number of nodes is 1, i.e. n = 1. 2·0+1 = 1 = 20+1−1.

Inductive hypothesis Suppose IH (k) holds for some k ≥ 0.

Inductive step Show that IH (k + 1) then holds.
Consider a binary tree of height k + 1:

T2T1

One of the subtrees T1 and T2 must then be of height k, otherwise the height
of T would not be k+1. (The height of the other subtree is ≤ k). Let n1, n2

be the numbers of nodes of T1 and T2, respectively.

1. By the inductive assumption, n1 ≤ 2k+1−1 and n2 ≤ 2k+1−1. Thus the
total number of nodes in the tree is n = 1+n1 +n2 ≤ 1+2(2k+1− 1) =
2(k+1)+1 − 1.

2. By the inductive assumption, the subtree of height k has ni ≥ 2k + 1
nodes. The other has nj ≥ 1 nodes. Thus the total number of nodes in
the tree is n = 1 + ni + nj ≥ 1 + (2k + 1) + 1 = 2(k + 1) + 1.

1 and 2 imply that the number of nodes n in the tree satisfies 2(k +1)+1 ≤
n ≤ 2(k+1)+1 − 1, i.e. IH (k + 1) holds.

By mathematical induction IH (k) holds for all k ≥ 0.

1.5 The length of a string x, |x|, can be defined recursively as follows.

1. If x = ǫ, then |x| = 0.

2. If x = ay for some a ∈ Σ and y ∈ Σ∗, then |x| = 1 + |y|

Let IH (k) be: ‘|x| = k if and only if |xR| = k, i.e. |x| = |xR|’. Show that IH (k)
holds for all k ≥ 0.

Basis IH (0) holds.
|x| = 0 ⇔ x = ǫ ⇔ xR = ǫ ⇔ |xR| = 0

Inductive hypothesis Suppose IH (k) holds for some k ≥ 0.
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Inductive step Show that IH (k + 1) then holds.
|x| = k+1 ⇔ x = ay and |y| = k for some a ∈ Σ and y ∈ Σ∗. The induction
hypothesis implies |yR| = k and thus we have |xR| = |yRa| = k + 1.

What is missing? From the definition of | · | above, it does not follow immediately
that the equality |yRa| = k + 1 really holds. We show this again by induction.

Let IH ′(k) be: ‘if |x| = k then |xa| = k + 1, for any x ∈ Σ∗ and a ∈ Σ’.

Basis IH ′(0) holds.
If |x| = 0, then x = ǫ. Thus |xa| = |a| = 1.

Inductive hypothesis Suppose IH ′(k) holds for some k ≥ 0.

Inductive step Show that IH ′(k + 1) then holds.
If |y| = k + 1 then y = bx, where |x| = k. So ya = bxa. By the assumption,
|xa| = k + 1. Hence |by| = |bxa| = k + 2 by the definition of | · |.

1.7 a) In order to show that RL is an equivalence relation, it must be shown that
RL is reflexive, symmetric and transitive.

reflexive For all x ∈ Σ∗, show xRLx.
Choose an arbitrary string x ∈ Σ∗. Then it is obviously true that for
all z ∈ Σ∗ xz ∈ L ⇔ xz ∈ L. Thus xRLx.

symmetric For all x, y ∈ Σ∗, show xRLy ⇒ yRLx.
Choose x, y ∈ Σ∗ such that xRLy. xRLy iff for all z ∈ Σ∗, xz ∈ L ⇔
yz ∈ L. We conclude that for all z ∈ Σ∗, yz ∈ L ⇔ xz ∈ L, i.e. yRLx.

transitive For all x, y, w ∈ Σ∗, show xRLy ∧ yRLw ⇒ xRLw.
Choose x, y, w ∈ Σ∗ such that xRLy and yRLw, and choose z ∈ Σ∗

arbitrary. Suppose xz ∈ L. xRLy implies yz ∈ L, which in turn implies
wz ∈ L. Suppose instead xz /∈ L. xRLy implies yz /∈ L, which in turn
implies wz /∈ L. Thus we may conclude xz ∈ L ⇔ wz ∈ L, i.e. xRLw.

b) The equivalence classes constitute a partitioning of the set on which the
equivalence relation is defined, here Σ∗. We start by finding the equivalence
class for some suitable string, e.g. ǫ. If we find that [ǫ], the equivalence
class for ǫ, does not cover Σ∗ (i.e., [ǫ] is a proper subset of Σ∗), we continue
by choosing a new string which does not belong to [ǫ]. This string is a
representative of a new equivalence class. We determine this equivalence
class and check whether the union of all the equivalence classes obtained
thus far is equal to Σ∗. If not, a new representative is chosen, its equivalence
class determined and so forth until all classes have been found.

How do we determine the equivalence class for a string x? A string y is
related to x, xRLy, if and only if for all z ∈ Σ∗, xz ∈ L ⇔ yz ∈ L. The
condition xz ∈ L ⇔ yz ∈ L can be restated as xz ∈ L ⇒ yz ∈ L and
xz /∈ L ⇒ yz /∈ L. Given a string x, we first determine what z should look
like in order that xz ∈ L. Since yz ∈ L should hold, the forms z may take
constrain the strings y which may be related to x. We then proceed to check
the second half of the condition. i.e. xz /∈ L ⇒ yz /∈ L. For those z which
satisfy xz /∈ L, it should also be the case that yz /∈ L. This may mean that
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some of the strings we found earlier do not qualify. The remaining strings
thus constitute [x], the equivalence class for x.

1. [ǫ]
x = ǫ and xz = z ∈ L implies z = (01)n, n ≥ 0. If z = (01)n and yz ∈ L,
it must be the case that y = (01)m, m ≥ 0 since yz = (01)m(01)n =
(01)m+n.
x = ǫ and xz = z /∈ L implies z 6= (01)n, n ≥ 0. If z 6= (01)n and
y = (01)m, then yz /∈ L holds. Thus [ǫ] = {(01)m | m ≥ 0}.

2. [0]
0 /∈ [ǫ]. x = 0 and xz = 0z ∈ L implies z = 1(01)n, n ≥ 0. If
z = 1(01)n and yz ∈ L, it must be the case that y = (01)m0 since
yz = (01)m01(01)n = (01)m+n+1.
x = 0 and xz = 0z /∈ L implies z 6= 1(01)n, n ≥ 0. If z 6= 1(01)n and
y = (01)m0, then yz /∈ L holds. Thus [0] = {(01)m0 | m ≥ 0}

3. [1]
1 /∈ [ǫ]∪ [0]. x = 1 implies that 1z /∈ L for an arbitrary choice of z ∈ Σ∗.
This means that all strings y in [1] must be such that yz /∈ L holds for
an arbitrary chosen string z. For each y ∈ Σ∗ − ([ǫ] ∪ [0]) (i.e. those
strings which does not belong to [ǫ] or [0]) it is the case that yz /∈ L
regardless of how z is chosen. Thus [1] = Σ∗ − ([ǫ] ∪ [0]).

c) Here we get an infinite number of equivalence classes since each string of the
form 0n, n ≥ 0 is only related to itself. This yields the following classes:

1. [0n] = {0n}, n ≥ 0

2. [01] = {0n1n | n ≥ 1}

3. [0k+11] = {0k+n1n | n ≥ 1}, k ≥ 1

4. [1] = Σ∗ − ([01] ∪ (∪∞

n=0[0
n]) ∪ (∪∞

n=2[0
n1])

d) 1. [ǫ] = {0n | n ≥ 0}

2. [1] = {0n10m | n ≥ 0, m ≥ 0}

3. [11] = Σ∗ − ([ǫ] ∪ [1])


