
TDDD14/TDDD85 Some Exam Remarks
Victor Lagerkvist

This document contains some tips which will (hopefully) make the
study period a bit smoother. It should not in any way be viewed as an
indication for which problems might or might not appear during the
exam.

Why are there no solutions to old exams?

Studying for an exam by learning from old solutions can easily be-
come a form of rote learning where one ignores the bigger picture
and only concentrates on memorising solutions. After graduation
you will practially never have the opportunity to compare your own
solution to a given solution. In fact, in general there are no perfect
solutions, only approximations, and thinking that you cannot solve
a problem without comparing it to a pre-given solution can lead to
very bad habits of mind. For most types of exercises in this course
there is not one, but typically many, good solutions, and you cannot
in general verify whether your own solution is correct by comparing
it to a pregiven solution.

Last, there is a wealth of exercises and detailed solutions in the
course book(s), the lecture notes, and the tutorial compendium. And
you can easily find more examples online if you so desire. Hence,
if you think that it is easier to learn a certain technique (e.g. learn-
ing the minimisation algorithm for DFAs) by solving exercises with
detailed solutions then you already have the possibility of doing so.
Importantly, there is nothing magical about exam exercises which
makes them stand out from other exercises which you have encoun-
tered in the course (a DFA is still a DFA, a regular expression is still a
regular expression, and so on). Thus:

1. Focus on tutorials, exercises from the course books (both available
online), and the lecture manuscripts, for learning a technique or a
method.

2. Solve exam exercises to hone your skills and look through old
exams to get a better sense of what is expected, knowledge-wise.

3. Ask me if you are unsure of what an acceptable exam answer
would be in a certain scenario, e.g., what the write-up should
consist of. However, keep in mind that the answer is typically
very straightforward: your solution should include everything,
including all step-by-step calculations that you have done, which
allows us to verify your solution.

tddd14/tddd85 some exam remarks 2

How can I verify my own solutions?

This is in general a difficult problem without a perfect solution.
Thankfully it is substantially easier for many of the techniques and
algorithms which we have developed during the course (otherwise,
we as teachers would not be able to grade your solutions).

Example 1. Assume that the goal is to construct a DFA for a given lan-
guage. You struggle for a bit and then have a few ideas which you combine
into a DFA. However, you are unsure of whether your solution is actually
correct and would be an acceptable answer at an exam. In such a situation
it is important to test your own solution, similarly to how you would write
unit tests when solving a programming assignment. Thankfully, this is easy
to do with a DFA. Since you were already given the language (in some de-
scription) you should be able to come up with a handful of example strings
and simulate the behaviour of the DFA with those example strings. Here,
just as in unit testing, it is important to include “edge cases”, for example
the empty string. Let us consider a few potential outcomes.

1. You cannot come up with any meaningful test data.

2. You come up with some example strings but is unable to simulate the
behaviour of the DFA.

3. You simulate the DFA and find an example of a string which the DFA
incorrectly accepts or rejects.

4. You simulate the DFA and do not find any strange behaviour.

If you struggle with the first item then it is very likely that you do not
understand the given language. Then you have no other choice than to go
back to the drawing board. If you fail to simulate the DFA then either (1)
the thing that you have drawn is not actually a DFA, or (2) you do not
understand how a DFA operates. Hence, take a second look and compare
your diagram with the definition of a DFA: what is the set of states? What
is the transition function? Is it actually deterministic? Is the alphabet the
same as for the given language? Recall that a DFA for a given state and a
given symbol has exactly one choice.

Last, assume that you have found a potential counter example to your
solution (e.g., a string which the DFA accepts but it should reject). In this
case, after having verified a second time that the string is actually a counter
example, try to use this string to fix your DFA. Do you have to add an
accept state, remove an accept state, or add a new state together with some
transitions? There are no general answers but it is in general much easier
to fix a problem when you have a concrete counter example in mind. Also, if
your DFA seems to be very far away from a working solution, then it might
be better to go back to the drawing board, rather than trying to patch it.

tddd14/tddd85 some exam remarks 3

The above hint works for essentially all exercises where you are
asked to produce something, e.g., a minimal DFA, a regular expres-
sion, a context-free grammar, and so on. While it is typically prefer-
able to verify something without the use of a computer program,
there is an abundance of tools available online for e.g. simulating au-
tomata, which might also be helpful. However, I will not endorse any
particular program or web site since I am unable to offer technical
support for external programs. Some additional remarks:

1. If the task is to compute a regular expression for a given DFA then
(1) generate a few example strings, and (2) compare the output of
the DFA with your regular expression. If you cannot determine
whether your regular expression matches a given string then you
have to take a few steps back and resolve that problem first (e.g.,
by re-reading the definition of a regular expression and the lan-
guage that it generates).

2. If the task is to minimise a DFA and you are unsure whether
you have applied the minimisation algorithm correctly, then you
should at least attempt to make sure that the resulting DFA gener-
ates the same language as before. Then check your calculations
again: did you correctly mark all pairs of states in iteration 0
where one state is an accept state, and the other is not? Repeat this
for iteration 1, iteration 2, and so on. Note that it is much easier to
check your own solution if you have included sufficient details.

3. If the task is to construct a context-free grammar then generate
a few example strings from your grammar using derivations and
check whether they belong to the language in question.

Another class of exercises is where you are asked to prove some-
thing. This is, in general, harder to verify, but when we ask you to
prove something we typically specify how it should be done. For ex-
ample, proving that a language is not regular by using the pumping
lemma or the Myhill-Nerode theorem.

Example 2. Proving that a language is not regular can (often) be done
with the inverted pumping lemma from lecture 6. Hence, assume that you
have tried to use the inverted pumping lemma but are not sure whether the
argument is correct. While there are no general guidelines that work in all
circumstances (except the trivial advice of trying to go through each step
and see if it a logical consequence of some previous steps) all proofs using the
pumping lemma have a quite similar structure, even if the details of course
may differ. Thus, regardless of the language in question your proof should
contain statements along the lines of:

1. Let p ≥ 1 be an arbitrary pumping length.

tddd14/tddd85 some exam remarks 4

The dots here should of course be
replaced by the string in question,
which you can choose freely as long as
(1) it is included in the language, and
(2) it is of length at least p.

2. Let s = . . . be a string in the language of length at least p.

3. Let s = xyz be an arbitrary partitioning of s into x, y, and z, where y is
non-empty and |xy| ≤ p.

After having done this you have to proceed and show that you can always
find an i ≥ 0 such that xyiz is not included in the language. If your proof
does not contain the above items then it is very likely incorrect.

Naturally, giving a complete proof can still be difficult, but if you
just make sure that your attempt contains the three items above then
you can eliminate a lot of potential errors.

How do I know that my solution is sufficently detailed? What do
I need to include?

This problem is related to the previous one but still a bit different
in nature. We already have detailed solutions to similar exercises in
the course book(s), the lecture notes, the tutorial compendium, and
the homework assignments. If your level of detail is very different to
those suggestions then it is very likely not sufficient. In particular, if
you have a question along the lines of “Do I really need to include
this part?” then the answer is very likely affirmative. We never deduct
points for superflous details, but we always have to deduct points
when important details are missing.

Similarly, if the exercise asks you to use a specific method (e.g, the
GNFA-method) then you have to use the method in question, and
based on existing solutions to similar problems it should already be
clear which level of detail we expect.

What if I do not even understand the exercise?

Then you will have to go back to the original material and study the
basic concepts (e.g., tutorial exercises, lecture notes, or the course
book(s)). Try to find the most fundamental concept which you do
not understand and concentrate on that. Yes, this can sometimes
be more time consuming, but you will also pick up other skills in
the process, increasing the likelihood of solving related (but not
identical) exercises.

	Why are there no solutions to old exams?
	How can I verify my own solutions?
	How do I know that my solution is sufficently detailed? What do I need to include?
	What if I do not even understand the exercise?

