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Slides originally for TDDD65 by Gustav Nordh

Some differences to Kozen:
- Kozen uses a predefined left-end marker symbol for TMs. One
can instead assume that nothing happens if trying to move left
at the first position.
- “Turing recognizable” is called “recursively enumerable” (or
“semi-decidable”) in Kozen.
- “Decidable” is primarily called “recursive” in Kozen (but both
terms are used).



Computability

What can be computed?

control

0 1 1 0 · · ·
read/write tape



Turing machine

Alan Turing (1912-1954)



Definition of a Turing machine

Definition
A Turing machine is a 7-tuple (Q,Σ, Γ, δ,q0,qaccept ,qreject )
where

Q is the finite set of states
Σ is the finite input alphabet not containing the blank
symbol B
Γ is the finite tape alphabet where B ∈ Γ and Σ ⊆ Γ

δ : Q × Γ→ Q × Γ× {L,R} is the transition function
q0 ∈ Q is the start state
qaccept ∈ Q is the accept state
qreject ∈ Q is the reject state



Comparision with finite automata

A Turing machine can both write on the tape and read from
it
The read-write head can move both to the left and right
The tape is infinite
The special states for rejecting and accepting take effect
immediately



Turing machine computation

Initially the machine recieves the input on the leftmost part
of the tape
Computation proceeds according to the transition function
The computation continues until the machine enters the
accept or reject states at which point it halts.
The machine may continue forever without entering the
accept or reject states, in which case we say that the
machine loops.



Turing-recognizable, decidable

Definition
The collection of strings that a Turing machine M accepts is the
language recognized by M, denoted L(M)

Definition
A language is Turing-recognizable if some Turing machine
recognizes it

Definition
A language is decidable if some Turing machine recognizes it
and rejects all strings that are not in the language
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Turing machines, decidable

Definition
A language is decidable if some Turing machine recognizes it
and rejects all strings that are not in the language

Example

Consider a Turing machine M with Σ = {0,1} that works as
follows: M accept all strings of even length and loop on all
strings of odd length.

Is L(M) decidable?
YES! For example by the Turing machine M ′ which accept all
strings of even length and reject all strings of odd length.
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Describing Turing machines

Machine code
Assembly code
Java code
Pseudo code
Algorithm description



Describing Turing machines

Formal description (e.g., State diagram)
Implementation level description
Algorithm description



Describing Turing machines: State diagram



Describing Turing machines: Implementation level

Example
Describe a Turing machine that recognizes the language
L = {0n1n2n | n ≥ 0}.

1 Scan the input from left to right and make sure it is of the
form 0∗1∗2∗ (if it is not, then reject)

2 Return the head to the left end of the tape
3 If there is no 0 on the tape, then scan right and check that

there are no 1’s and 2’s on the tape and accept (should a 1
or 2 be on the tape, then reject)

4 Otherwise, cross of the first 0 and continue to the right
crossing of the first 1 and the first 2 that is found (should
there be no 1 or no 2 on the tape, then reject)

5 Go to Step 2



Describing Turing machines: Algorithm description

An algorithm description is a list of simple instructions for
solving/computing some task.

If the goal of the algorithm description is to convince the
reader that the task can be solved/computed, then “simple
instructions” means “can be carried out by a Turing
machine”.
Algorithm descriptions are similar to mathematical proofs

The goal of a mathematical proof is to convince the reader
that the truth of a mathematical statement follows from the
basic axioms.
The goal of an algorithm description is to convince the
reader that a task/problem can be solved by Turing
machines/computers.
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Describing Turing machines: Algorithm description

Example
Describe an algorithm for recognizing the language
L = {0n1n2n | n ≥ 0}.

1 Check that the input is of the form 0∗1∗2∗. Then count the
number of 0’s, 1’s, and 2’s. If they are the same, accept.
Otherwise, reject.



Describing Turing machines: Algorithm description

Example
Describe an algorithm for recognizing the language
L = {0n1n2n | n ≥ 0}.

1 Check that the input is of the form 0∗1∗2∗. Then count the
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Otherwise, reject.



Algorithm

Muhammad ibn Musa al-Khwarizmi (780-850)



Alternatives to Turing machines?

Why are Turing machines a good model for computation?

There should be more powerful machines, right?
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Alternatives to Turing machines?

Alonzo Church (1903-1995)



Church-Turing thesis

Intuitive notion of computation

equals

Turing machine computation



Consequences of the Church-Turing thesis

The details of the computational model are not important

Opens up the possibility to prove that some problems are
not solvable by computers/Turing machines
Humans can be simulated by Turing machines!?
The universe is a Turing machine!?
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Testing the Church-Turing thesis

Theorem
Nondeterministic Turing machines can be simulated by
deterministic Turing machines



Definition of a nondeterministic Turing machine

Definition
A nondeterministic Turing machine is a 7-tuple
(Q,Σ, Γ, δ,q0,qaccept ,qreject ) where

Q is the finite set of states
Σ is the finite input alphabet not containing the blank
symbol B
Γ is the finite tape alphabet where B ∈ Γ and Σ ⊆ Γ

δ : Q × Γ→ P(Q × Γ× {L,R}) is the transition function
q0 ∈ Q is the start state
qaccept ∈ Q is the accept state
qreject ∈ Q is the reject state

A nondeterministic Turing machine accepts its input w if at least
one of the states explored is an accept state.



Definition of a nondeterministic Turing machine

Definition
A nondeterministic Turing machine is a 7-tuple
(Q,Σ, Γ, δ,q0,qaccept ,qreject ) where

Q is the finite set of states
Σ is the finite input alphabet not containing the blank
symbol B
Γ is the finite tape alphabet where B ∈ Γ and Σ ⊆ Γ

δ : Q × Γ→ P(Q × Γ× {L,R}) is the transition function
q0 ∈ Q is the start state
qaccept ∈ Q is the accept state
qreject ∈ Q is the reject state

A nondeterministic Turing machine accepts its input w if at least
one of the states explored is an accept state.



Configuration of a Turing machine

Given a Turing machine M operating on an input w : the current
state, current tape contents, and current position of the
read/write head is the current configuration of M.

Example
00q510 represent the configuration where the tape contents is
0010, the state is q5, and the position of the head is over the 1.

The start configuration is q0w
An accept configuration is one where the state is qaccept

A reject configuration is one where the state is qreject
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Testing the Church-Turing thesis

Theorem
Nondeterministic Turing machines can be simulated by
deterministic Turing machines

Proof.
Given a nondeterministic Turing machine N we construct a
deterministic Turing machine D such that D accepts input w if
and only if N accepts w . D works as follows:
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and only if N accepts w . D works as follows:
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on input w , D explores the computation tree of N on input
w .

2 If D encounters an accept configuration of N, then D
accepts w .

3 If D has explored the whole computational tree of N
without finding an accept configuration, then D rejects w .



Testing the Church-Turing thesis

Theorem
Nondeterministic Turing machines can be simulated by
deterministic Turing machines

Proof.
Given a nondeterministic Turing machine N we construct a
deterministic Turing machine D such that D accepts input w if
and only if N accepts w . D works as follows:

1 Given input w . Beginning with the start configuration of N
on input w , D explores the computation tree of N on input
w in breadth first manner (i.e., level by level).

2 If D encounters an accept configuration of N, then D
accepts w .

3 If D has explored the whole computational tree of N
without finding an accept configuration, then D rejects w .



Decidable languages

ADFA = {〈B,w〉 | B is a DFA that accepts input string w}

Theorem
ADFA is decidable

Proof.
Let M be a Turing machine that works as follows:

1 Check that the input 〈B,w〉 is a legal encoding of a DFA B
and string w (otherwise reject)

2 Simulate B on input w
3 If the simulation ends in an accept state (of B), then M

accepts the input 〈B,w〉
4 If the simulation ends in a nonaccepting state (of B), then

M rejects the input 〈B,w〉
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Diagonalization

Georg Cantor (1845-1918)



Diagonalization

Georg Cantor (1845-1918)



Diagonalization

Theorem
Some languages are not Turing-recognizable

Proof idea.
1 The set of all Turing machines is countable
2 The set of all languages is uncountable
3 Since each Turing machine recognize exactly one

language, there are languages that are not recognized by
any Turing machine
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Diagonalization

Lemma
The set of all Turing machines is countable

Proof.
1 The set of all strings Σ∗ (for any alphabet Σ) is countable

A list of all strings in Σ∗ can be written down by listing all
strings of length 0, length 1, length 2, ...

2 Each Turing machine M can be encoded as a string 〈M〉
over Σ

3 By omitting those strings in Σ∗ which are not legal
encodings of Turing machines, we get a list of all Turing
machines
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Diagonalization

Lemma
The set of all languages over Σ is uncountable

Proof idea.
1 Each language over Σ can be represented by its

characteristic sequence (an infinite binary sequence).
2 Each infinite binary sequence can be seen as a

characteristic sequence for a language over Σ. Hence,
there is a one-to-one correspondence between infinite
binary sequences and languages over Σ.

3 The set of infinite binary sequences is uncountable (by a
simple diagonalization proof)

4 Hence, the set of all languages over Σ is uncountable
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Undecidability

Hilbert’s 10th problem:
Construct an algorithm that given a polynomial, determine
whether the polynomial has an integral root

Example

6x3yz2 + 3xy2 − x3 − 10
root: x = 5, y = 3, z = 0

1970: Hilbert’s 10th problem is undecidable!
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Undecidability

Software verification: Given a computer program and a
specification of how the program is supposed to work,
verify that the program performs as specified.
Impossible! This problem is not solvable by computers
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Undecidability

Construct a tool/debugger that can tell whether a Java
program will go into an infinite loop on input w .

Impossible! This problem is undecidable
There is no Turing machine U that given a Turing machine
M and string w can determine whether M will loop on input
w
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Undecidability

ATM = {〈M,w〉 | M is a Turing machine that accepts w}

Theorem
ATM is Turing-recognizable

Proof.
Let U be a Turing machine that works as follows:

1 Check that the input 〈M,w〉 is a legal encoding of a Turing
machine M and string w (otherwise reject)

2 Simulate M on input w
3 If M enters the accept state, then U accepts 〈M,w〉
4 If M enters the reject state, then U rejects 〈M,w〉

Note that U does not decide ATM !
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