Undecidability of the halting problem

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine that accepts } w \}$

Theorem A_{TM} is undecidable

Undecidability of the halting problem

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine that accepts } w \}$

Theorem A_{TM} is undecidable

- **O** Assume that A_{TM} is decidable by a Turing machine H
- 2 Construct a new Turing machine *D* which takes $\langle M \rangle$ as input and works as follows:
 - Run H on (M, (M)) and output the opposite of what H outputs
- Summing D on input (D) results in a contradiction because D rejects (D) if D accepts (D), and D accepts (D) if D rejects (D)

 $\overline{A_{TM}} = \{ w \mid w \notin A_{TM} \}$

$$\overline{A_{TM}} = \{ w \mid w \notin A_{TM} \}$$

Theorem

 $\overline{A_{TM}}$ is not Turing-recognizable

$$\overline{A_{TM}} = \{ w \mid w \notin A_{TM} \}$$

Theorem

 $\overline{A_{TM}}$ is not Turing-recognizable

Proof.

• Assume with the aim of reaching a contradiction that $\overline{A_{TM}}$ is Turing-recognizable.

$$\overline{A_{TM}} = \{ w \mid w \notin A_{TM} \}$$

Theorem

 $\overline{A_{TM}}$ is not Turing-recognizable

- Assume with the aim of reaching a contradiction that $\overline{A_{TM}}$ is Turing-recognizable.
- 2 Let M_1 be a Turing machine recognizing $\overline{A_{TM}}$ and M_2 a Turing machine recognizing A_{TM} .

$$\overline{A_{TM}} = \{ w \mid w \notin A_{TM} \}$$

Theorem

 $\overline{A_{TM}}$ is not Turing-recognizable

- Assume with the aim of reaching a contradiction that $\overline{A_{TM}}$ is Turing-recognizable.
- 2 Let M_1 be a Turing machine recognizing $\overline{A_{TM}}$ and M_2 a Turing machine recognizing A_{TM} .
- On input w run both M_1 and M_2 on w in parallel

$$\overline{A_{TM}} = \{ w \mid w \notin A_{TM} \}$$

Theorem

 $\overline{A_{TM}}$ is not Turing-recognizable

- Assume with the aim of reaching a contradiction that $\overline{A_{TM}}$ is Turing-recognizable.
- 2 Let M_1 be a Turing machine recognizing $\overline{A_{TM}}$ and M_2 a Turing machine recognizing A_{TM} .
- **On input** *w* run both M_1 and M_2 on *w* in parallel
- If M_1 accepts, then reject. If M_2 accepts, then accept.
- **Solution** This shows that A_{TM} is decidable, which is a contradiction

Reductions

Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if some Turing machine M on every input w halts with f(w) on its tape

Definition

Language *A* is mapping reducible to language *B* if there is a computable function $f : \Sigma^* \to \Sigma^*$ such that for every *w*

 $w \in A iff f(w) \in B$

The function *f* is called a reduction from *A* to *B* If *A* is mapping reducible to *B* then we write $A \leq_m B$

If B is decidable and $A \leq_m B$, then A is decidable

If B is decidable and $A \leq_m B$, then A is decidable

Proof.

Let M_B be a Turing machine that decides B and f the reduction from A to B. Given input w:

- Compute f(w)
- Run M_B on f(w), accept if M_B accepts f(w), and reject if M_B rejects f(w)

If A is undecidable and $A \leq_m B$, then B is undecidable

If A is undecidable and $A \leq_m B$, then B is undecidable

Proof.

Assume with the aim of reaching a contradiction that *B* is decidable. Let M_B be a Turing machine that decides *B* and *f* the reduction from *A* to *B*. Given input *w*:

• Compute f(w)

- Run M_B on f(w), accept if M_B accepts f(w), and reject if M_B rejects f(w)
- This shows that A is decidable, which is a contradiction

If B is Turing-recognizable and $A \leq_m B$, then A is Turing-recognizable

If A is not Turing-recognizable and $A \leq_m B$, then B is not Turing-recognizable

$E_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}$

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}$

Theorem *E_{TM} is undecidable* $E_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}$

Theorem

E_{TM} is undecidable

Proof.

By reduction from A_{TM} (Theorem 5.2 in Sipser)

Theorem

EQ_{TM} is undecidable

Theorem

EQ_{TM} is undecidable

Proof. $E_{TM} \leq_m EQ_{TM}$:

Theorem EQ_{TM} is undecidable

Proof.

 $E_{TM} \leq_m EQ_{TM}$:

• Let M_2 be a Turing machine such that $L(M_2) = \emptyset$

Theorem EQ_{TM} is undecidable

Proof.

 $E_{TM} \leq_m EQ_{TM}$:

- Let M_2 be a Turing machine such that $L(M_2) = \emptyset$
- ② Given a Turing machine M, let $f(\langle M \rangle) = \langle M, M_2 \rangle$

Theorem EQ_{TM} is undecidable

Proof.

 $E_{TM} \leq_m EQ_{TM}$:

- Let M_2 be a Turing machine such that $L(M_2) = \emptyset$
- ② Given a Turing machine M, let $f(\langle M \rangle) = \langle M, M_2 \rangle$

$$\begin{array}{l} \textcircled{3} \quad \langle M \rangle \in E_{TM} \text{ iff } L(M) = \emptyset \text{ iff } L(M) = L(M_2) \text{ iff} \\ \langle M, M_2 \rangle \in EQ_{TM} \end{array}$$

Kurt Gödel (1906-1978)

Theorem

(Informally) There are true mathematical statements that cannot be proved

Theorem

(Informally) There are true mathematical statements that cannot be proved

Proof idea.

• The language of all true mathematical statements is undecidable (by reduction from A_{TM})

Theorem

(Informally) There are true mathematical statements that cannot be proved

- The language of all true mathematical statements is undecidable (by reduction from A_{TM})
- The language of all provable statements is Turing recognizable by a Turing machine M

Theorem

(Informally) There are true mathematical statements that cannot be proved

- The language of all true mathematical statements is undecidable (by reduction from A_{TM})
- The language of all provable statements is Turing recognizable by a Turing machine M
- Assume that all true statements are provable

Theorem

(Informally) There are true mathematical statements that cannot be proved

- The language of all true mathematical statements is undecidable (by reduction from A_{TM})
- The language of all provable statements is Turing recognizable by a Turing machine M
- Assume that all true statements are provable
- Given a statement Φ, run M in parallel on Φ and ¬Φ. One of them is true and thus (by assumption) provable. If Φ is provable then Φ is true and if ¬Φ is provable then Φ is false.

Theorem

(Informally) There are true mathematical statements that cannot be proved

- The language of all true mathematical statements is undecidable (by reduction from A_{TM})
- The language of all provable statements is Turing recognizable by a Turing machine M
- Assume that all true statements are provable
- Given a statement Φ, run M in parallel on Φ and ¬Φ. One of them is true and thus (by assumption) provable. If Φ is provable then Φ is true and if ¬Φ is provable then Φ is false.
- So M decides the truth of Φ. This is a contradiction (with 1 above)