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Undecidabillity of the halting problem

Amy = {(M,w) | M is a Turing machine that accepts w}

Theorem
A1w IS undecidable

Proof.

@ Assume that A7y, is decidable by a Turing machine H

@ Construct a new Turing machine D which takes (M) as
input and works as follows:

e Run Hon (M, (M)) and output the opposite of what H
outputs
© Running D on input (D) results in a contradiction because
D rejects (D) if D accepts (D), and D accepts (D) if D
rejects (D)
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An explicit language which is not Turing-recognizable

Am ={w | w ¢ Am}

Theorem
Aty is not Turing-recognizable

Proof.

@ Assume with the aim of reaching a contradiction that A7y
Is Turing-recognizabile.

@ Let M, be a Turing machine recognizing Ay and M» a
Turing machine recognizing Any.

© On input w run both M; and M, on w in parallel




An explicit language which is not Turing-recognizable

Am ={w | w ¢ Am}

Theorem
Aty is not Turing-recognizable

Proof.

@ Assume with the aim of reaching a contradiction that A7y
Is Turing-recognizabile.

@ Let M, be a Turing machine recognizing Ay and M» a
Turing machine recognizing Any.

© On input w run both M; and M, on w in parallel
©Q If M, accepts, then reject. If M, accepts, then accept.
@ This shows that A7y, is decidable, which is a contradiction
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Reductions

Definition
A function f : ¥* — ¥* is computable if some Turing machine M
on every input w halts with f(w) on its tape

v




Reductions

Definition
Language A is mapping reducible to language B if there is a
computable function f : ¥* — ¥* such that for every w

we Aiff f(w) € B

The function f is called a reduction from Ato B
If Ais mapping reducible to B then we write A <, B
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Reductions

Theorem
If B is decidable and A <., B, then A is decidable

Proof.

Let Mg be a Turing machine that decides B and f the reduction
from A to B. Given input w:

@ Compute f(w)

© Run Mg on f(w), accept if Mg accepts f(w), and reject if
Mg rejects f(w)
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Reductions

Theorem
If A is undecidable and A <,,, B, then B is undecidable

Proof.

Assume with the aim of reaching a contradiction that B is
decidable. Let Mg be a Turing machine that decides B and f the
reduction from A to B. Given input w:

@ Compute f(w)

@ Run Mg on f(w), accept if Mg accepts f(w), and reject if
Mg rejects f(w)

© This shows that A is decidable, which is a contradiction
[ ]



Reductions

Theorem

If B is Turing-recognizable and A <, B, then A is
Turing-recognizable




Reductions

Theorem

If A is not Turing-recognizable and A <, B, then B is not
Turing-recognizable




Reductions _

Emy = {(M) | M is a Turing machine and L(M) = 0}
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Reductions

Ery = {(M)| M is a Turing machine and L(M) = 0}

Theorem
E1y Is undecidable

Proof.
By reduction from Ay (Theorem 5.2 in Sipser)
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Reductions

EQmm = {{(My, M) | My and M, are TMs and L(My) = L(M>)}

Theorem
EQqy is undecidable

Proof.
Emnv <m EQrum:
@ Let M, be a Turing machine such that L(Ms) = 0
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EQmy = {(My,Mz) | My and M, are TMs and L(M;) = L(Mz)}

Theorem
EQqy is undecidable

Proof.
Etm <m EQtum:

@ Let M, be a Turing machine such that L(M,) = ()
@ Given a Turing machine M, let f((M)) = (M, M)




Reductions

EQmy = {(My,Mz) | My and M, are TMs and L(M;) = L(Mz)}

Theorem
EQqy is undecidable

Proof.
Etm <m EQtum:

@ Let M, be a Turing machine such that L(M,) = ()
@ Given a Turing machine M, let f((M)) = (M, M)

Q (M) € Eqy iff LIM) = 0 iff L(M) = L(M>) iff
(M, M>) € EQmi




Incompleteness Theorem via Undecidability

Kurt Gddel (1906-1978)
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Incompleteness Theorem via Undecidability (S, 6.2)

Theorem

(Informally) There are true mathematical statements that
cannot be proved

Proof idea.

@ The language of all true mathematical statements is
undecidable (by reduction from Ary)

@ The language of all provable statements is Turing
recognizable by a Turing machine M

© Assume that all true statements are provable

Q@ Given a statement ¢, run M in parallel on ¢ and —®. One
of them is true and thus (by assumption) provable. If ¢ is
provable then & is true and if —=® is provable then ¢ is false.



Incompleteness Theorem via Undecidability (S, 6.2)

Theorem

(Informally) There are true mathematical statements that
cannot be proved

Proof idea.

@ The language of all true mathematical statements is
undecidable (by reduction from Ary)

@ The language of all provable statements is Turing
recognizable by a Turing machine M

© Assume that all true statements are provable

Q@ Given a statement ¢, run M in parallel on ¢ and —®. One
of them is true and thus (by assumption) provable. If ¢ is
provable then & is true and if —=® is provable then ¢ is false.

© So M decides the truth of ¢. This is a contradiction (with 1
above)

[]



