
Undecidability of the halting problem

ATM = {〈M,w〉 | M is a Turing machine that accepts w}

Theorem
ATM is undecidable

Proof.
1 Assume that ATM is decidable by a Turing machine H
2 Construct a new Turing machine D which takes 〈M〉 as

input and works as follows:
Run H on 〈M, 〈M〉〉 and output the opposite of what H
outputs

3 Running D on input 〈D〉 results in a contradiction because
D rejects 〈D〉 if D accepts 〈D〉, and D accepts 〈D〉 if D
rejects 〈D〉
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An explicit language which is not Turing-recognizable

ATM = {w | w /∈ ATM}

Theorem

ATM is not Turing-recognizable

Proof.
1 Assume with the aim of reaching a contradiction that ATM

is Turing-recognizable.
2 Let M1 be a Turing machine recognizing ATM and M2 a

Turing machine recognizing ATM .
3 On input w run both M1 and M2 on w in parallel
4 If M1 accepts, then reject. If M2 accepts, then accept.
5 This shows that ATM is decidable, which is a contradiction
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A function f : Σ∗ → Σ∗ is computable if some Turing machine M
on every input w halts with f (w) on its tape
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Reductions

Definition
Language A is mapping reducible to language B if there is a
computable function f : Σ∗ → Σ∗ such that for every w

w ∈ A iff f (w) ∈ B

The function f is called a reduction from A to B
If A is mapping reducible to B then we write A ≤m B



Reductions

Theorem
If B is decidable and A ≤m B, then A is decidable

Proof.
Let MB be a Turing machine that decides B and f the reduction
from A to B. Given input w :

1 Compute f (w)

2 Run MB on f (w), accept if MB accepts f (w), and reject if
MB rejects f (w)
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Reductions

Theorem
If B is Turing-recognizable and A ≤m B, then A is
Turing-recognizable



Reductions

Theorem
If A is not Turing-recognizable and A ≤m B, then B is not
Turing-recognizable
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Theorem
ETM is undecidable

Proof.
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Incompleteness Theorem via Undecidability

Kurt Gödel (1906-1978)



Incompleteness Theorem via Undecidability (S, 6.2)

Theorem
(Informally) There are true mathematical statements that
cannot be proved

Proof idea.
1 The language of all true mathematical statements is

undecidable (by reduction from ATM )
2 The language of all provable statements is Turing

recognizable by a Turing machine M
3 Assume that all true statements are provable
4 Given a statement Φ, run M in parallel on Φ and ¬Φ. One

of them is true and thus (by assumption) provable. If Φ is
provable then Φ is true and if ¬Φ is provable then Φ is false.

5 So M decides the truth of Φ. This is a contradiction (with 1
above)
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