Undecidability of the halting problem

Amy = {(M,w) | M is a Turing machine that accepts w}

Theorem
ATy IS undecidable

Undecidabillity of the halting problem

Amy = {(M,w) | M is a Turing machine that accepts w}

Theorem
A1w IS undecidable

Proof.

@ Assume that A7y, is decidable by a Turing machine H

@ Construct a new Turing machine D which takes (M) as
input and works as follows:

e Run Hon (M, (M)) and output the opposite of what H
outputs
© Running D on input (D) results in a contradiction because
D rejects (D) if D accepts (D), and D accepts (D) if D
rejects (D)

An explicit language which is not Turing-recognizable

Am ={w | w ¢ Am}

An explicit language which is not Turing-recognizable

Am ={w | w ¢ Am}

Theorem
Aty is not Turing-recognizable J

An explicit language which is not Turing-recognizable

Am ={w | w ¢ Am}

Theorem
Aty is not Turing-recognizable J

Proof.

@ Assume with the aim of reaching a contradiction that Ay
IS Turing-recognizabile.

An explicit language which is not Turing-recognizable

Am ={w | w ¢ Am}

Theorem
Aty is not Turing-recognizable

Proof.

@ Assume with the aim of reaching a contradiction that A7y
IS Turing-recognizabile.

@ Let M, be a Turing machine recognizing Ay and M a
Turing machine recognizing Any.

An explicit language which is not Turing-recognizable

Am ={w | w ¢ Am}

Theorem
Aty is not Turing-recognizable

Proof.

@ Assume with the aim of reaching a contradiction that A7y
Is Turing-recognizabile.

@ Let M, be a Turing machine recognizing Ay and M» a
Turing machine recognizing Any.

© On input w run both M; and M, on w in parallel

An explicit language which is not Turing-recognizable

Am ={w | w ¢ Am}

Theorem
Aty is not Turing-recognizable

Proof.

@ Assume with the aim of reaching a contradiction that A7y
Is Turing-recognizabile.

@ Let M, be a Turing machine recognizing Ay and M» a
Turing machine recognizing Any.

© On input w run both M; and M, on w in parallel
©Q If M, accepts, then reject. If M, accepts, then accept.
@ This shows that A7y, is decidable, which is a contradiction

[]

Reductions

Definition
A function f : ¥* — ¥* is computable if some Turing machine M
on every input w halts with f(w) on its tape

v

Reductions

Definition
Language A is mapping reducible to language B if there is a
computable function f : ¥* — ¥* such that for every w

we Aiff f(w) € B

The function f is called a reduction from Ato B
If Ais mapping reducible to B then we write A <, B

Reductions _

Theorem
If B is decidable and A <., B, then A is decidable l

Reductions

Theorem
If B is decidable and A <., B, then A is decidable

Proof.

Let Mg be a Turing machine that decides B and f the reduction
from A to B. Given input w:

@ Compute f(w)

© Run Mg on f(w), accept if Mg accepts f(w), and reject if
Mg rejects f(w)

Reductions _
Theorem
If A is undecidable and A <,,, B, then B is undecidable l

Reductions

Theorem
If A is undecidable and A <,,, B, then B is undecidable

Proof.

Assume with the aim of reaching a contradiction that B is
decidable. Let Mg be a Turing machine that decides B and f the
reduction from A to B. Given input w:

@ Compute f(w)

@ Run Mg on f(w), accept if Mg accepts f(w), and reject if
Mg rejects f(w)

© This shows that A is decidable, which is a contradiction
[]

Reductions

Theorem

If B is Turing-recognizable and A <, B, then A is
Turing-recognizable

Reductions

Theorem

If A is not Turing-recognizable and A <, B, then B is not
Turing-recognizable

Reductions _

Emy = {(M) | M is a Turing machine and L(M) = 0}

Reductions

Ery = {(M)| M is a Turing machine and L(M) = 0}

Theorem
E1y Is undecidable

Reductions

Ery = {(M)| M is a Turing machine and L(M) = 0}

Theorem
E1y Is undecidable

Proof.
By reduction from Ay (Theorem 5.2 in Sipser)

Reductions

EQmm = {{(My, M) | My and M, are TMs and L(My) = L(M>)}

Reductions

EQmm = {{(My, M) | My and M, are TMs and L(My) = L(M>)}

Theorem
EQqy is undecidable

Reductions

EQmy = {(My, M) | My and M, are TMs and L(My) = L(M>)}

Theorem
EQqy is undecidable

Proof.
Etm <m EQrun:

Reductions

EQmm = {{(My, M) | My and M, are TMs and L(My) = L(M>)}

Theorem
EQqy is undecidable

Proof.
Emnv <m EQrum:
@ Let M, be a Turing machine such that L(Ms) = 0

Reductions

EQmy = {(My,Mz) | My and M, are TMs and L(M;) = L(Mz)}

Theorem
EQqy is undecidable

Proof.
Etm <m EQtum:

@ Let M, be a Turing machine such that L(M,) = ()
@ Given a Turing machine M, let f((M)) = (M, M)

Reductions

EQmy = {(My,Mz) | My and M, are TMs and L(M;) = L(Mz)}

Theorem
EQqy is undecidable

Proof.
Etm <m EQtum:

@ Let M, be a Turing machine such that L(M,) = ()
@ Given a Turing machine M, let f((M)) = (M, M)

Q (M) € Eqy iff LIM) = 0 iff L(M) = L(M>) iff
(M, M>) € EQmi

Incompleteness Theorem via Undecidability

Kurt Gddel (1906-1978)

Incompleteness Theorem via Undecidability (S, 6.2)

Theorem

(Informally) There are true mathematical statements that
cannot be proved

Incompleteness Theorem via Undecidabillity (S, 6.2)

Theorem

(Informally) There are true mathematical statements that
cannot be proved

Proof idea.

@ The language of all true mathematical statements is
undecidable (by reduction from Ary)

Incompleteness Theorem via Undecidability (S, 6.2)

Theorem

(Informally) There are true mathematical statements that
cannot be proved

Proof idea.

@ The language of all true mathematical statements is
undecidable (by reduction from Ary)

@ The language of all provable statements is Turing
recognizable by a Turing machine M

Incompleteness Theorem via Undecidability (S, 6.2)

Theorem

(Informally) There are true mathematical statements that
cannot be proved

Proof idea.

@ The language of all true mathematical statements is
undecidable (by reduction from Ary)

@ The language of all provable statements is Turing
recognizable by a Turing machine M

© Assume that all true statements are provable

Incompleteness Theorem via Undecidability (S, 6.2)

Theorem

(Informally) There are true mathematical statements that
cannot be proved

Proof idea.

@ The language of all true mathematical statements is
undecidable (by reduction from Ary)

@ The language of all provable statements is Turing
recognizable by a Turing machine M

© Assume that all true statements are provable

Q@ Given a statement ¢, run M in parallel on ¢ and —®. One
of them is true and thus (by assumption) provable. If ¢ is
provable then & is true and if —=® is provable then ¢ is false.

Incompleteness Theorem via Undecidability (S, 6.2)

Theorem

(Informally) There are true mathematical statements that
cannot be proved

Proof idea.

@ The language of all true mathematical statements is
undecidable (by reduction from Ary)

@ The language of all provable statements is Turing
recognizable by a Turing machine M

© Assume that all true statements are provable

Q@ Given a statement ¢, run M in parallel on ¢ and —®. One
of them is true and thus (by assumption) provable. If ¢ is
provable then & is true and if —=® is provable then ¢ is false.

© So M decides the truth of ¢. This is a contradiction (with 1
above)

[]

