TDDD14/TDDD85 Slides for Lecture 4, 2017

Slides originally for TDDD65 by Gustav Nordh

Some differences to Kozen:

- Closure properties for regular languages uses ε -NFA constructions instead of DFA constructions.

- Patterns are not used.

- Conversion of DFA to regular expression uses the GNFA method, instead of Kozens method.

The natural numbers $\mathbb{N} = \{0, 1, 2, 3, ...\}$ are closed under multiplication in the sense that for any natural numbers *x* and *y*, *x* · *y* is again a natural number

The natural numbers are not closed under subtraction (3-5=-2 which is not a natural number)

Definition

We say that a class of languages C is closed under an operation *op* if applying *op* to any languages from C results in a language in C

Understanding under which operations a class of languages $\ensuremath{\mathcal{C}}$ is closed is important!

Theorem

The class of regular languages is closed under union (if L_1 and L_2 are regular languages, then so is $L_1 \cup L_2$)

Theorem

The class of regular languages is closed under concatenation (if L_1 and L_2 are regular languages, then so is L_1L_2)

Theorem

The class of regular languages is closed under star (if L_1 is a regular language, then so is L_1^*)

Regular expressions

Definition of regular expressions

Definition

L(R) denotes the language described by the regular expression R.

R is a regular expression if *R* is

• a for
$$a \in \Sigma$$
, $L(a) = \{a\}$

2
$$\varepsilon, L(\varepsilon) = \{\varepsilon\}$$

$$\bigcirc$$
 Ø, $L(\emptyset) = \emptyset$

 $R_1 + R_2$ where R_1 and R_2 are regular expressions,
 $L(R_1 + R_2) = L(R_1) \cup L(R_2)$

Solution R₁ R₂ where
$$R_1$$
 and R_2 are regular expressions,
 $L(R_1R_2) = L(R_1)L(R_2)$

• R_1^* where R_1 is a regular expression, $L(R_1^*) = L(R_1)^*$

* has higher precedence than concatenation and +, concatenation has higher precedence than +

Example

- $(0+1)^*0$ binary strings ending with 0
- (0+1)*00(0+1)* binary strings with at least two consecutive 0's
- $(0+1+2+3+4+5+6+7+8+9)^*1234(0+1+2+3+4+5+6+7+8+9)^*$

Theorem

A language is regular if and only if some regular expression describes it

Lemma

Lemma

Lemma

Lemma

Lemma

Equivalence with finite automata: Example

Lemma

If a language is recognized by a DFA then it is described by a regular expression

Idea: Use a generalized NFA (GNFA) where the transition arrows can be labeled by regular expressions

Lemma

If a language is recognized by a DFA then it is described by a regular expression

Idea: Use a generalized NFA (GNFA) where the transition arrows can be labeled by regular expressions

Given a DFA

- Add a new start state with an ε transition to the old start state
- Add a new accept state with ε transitions from all old accept states
- Replace transitions of the form a, b, c by a + b + c

Lemma

- Add a new start state with an ε transition to the old start state
- Add a new accept state with ε transitions from all old accept states
- Replace transitions of the form a, b, c by a + b + c

Lemma

- Add a new start state with an ε transition to the old start state
- Add a new accept state with ε transitions from all old accept states
- Replace transitions of the form a, b, c by a + b + c

Lemma

- Add a new start state with an ε transition to the old start state
- Add a new accept state with ε transitions from all old accept states
- Replace transitions of the form a, b, c by a + b + c
- Eliminate a state different from the start and accept state (reducing the number of states by 1)

Lemma

If a language is recognized by a DFA then it is described by a regular expression

• Eliminate a state different from the start and accept state (reducing the number of states by 1)

Lemma

If a language is recognized by a DFA then it is described by a regular expression

 Eliminate a state different from the start and accept state (reducing the number of states by 1)

Lemma

If a language is recognized by a DFA then it is described by a regular expression

• Eliminate a state different from the start and accept state (reducing the number of states by 1)

Lemma

Lemma

If a language is recognized by a DFA then it is described by a regular expression

Using the rule $R_1R_2^*R_3 + R_4$ the new transition from q_1 to q_F is labeled $11^*\varepsilon + \emptyset$

Lemma

If a language is recognized by a DFA then it is described by a regular expression

Using the rule $R_1R_2^*R_3 + R_4$ the new transition from q_1 to q_F is labeled $11^*\varepsilon + \emptyset$ Using the rule $R_1R_2^*R_3 + R_4$ the new transition from q_1 to q_1 is labeled $11^*0 + 0$

Lemma

Lemma

Lemma

If a language is recognized by a DFA then it is described by a regular expression

Using the rule $R_1 R_2^* R_3 + R_4$ the new transition from q_s to q_F is labeled $\varepsilon (11^*0 + 0)^* (11^*\varepsilon + \emptyset) + \emptyset$

Lemma

