TDDD14/TDDD85
 Slides for Lecture 4, 2017

Slides originally for TDDD65 by Gustav Nordh

Some differences to Kozen:

- Closure properties for regular languages uses ε-NFA constructions instead of DFA constructions.
- Patterns are not used.
- Conversion of DFA to regular expression uses the GNFA method, instead of Kozens method.

Closure properties of regular languages

The natural numbers $\mathbb{N}=\{0,1,2,3, \ldots\}$ are closed under multiplication in the sense that for any natural numbers x and y, $x \cdot y$ is again a natural number

The natural numbers are not closed under subtraction
($3-5=-2$ which is not a natural number)

Definition
 We say that a class of languages \mathcal{C} is closed under an operation op if applying op to any languages from \mathcal{C} results in a language in \mathcal{C}

Closure properties of regular languages

Understanding under which operations a class of languages \mathcal{C} is closed is important!

Closure properties of regular languages

Theorem

The class of regular languages is closed under union (if L_{1} and L_{2} are regular languages, then so is $L_{1} \cup L_{2}$)

Proof.

Closure properties of regular languages

Theorem

The class of regular languages is closed under concatenation (if L_{1} and L_{2} are regular languages, then so is $L_{1} L_{2}$)

Closure properties of regular languages

Theorem

The class of regular languages is closed under star (if L_{1} is a regular language, then so is L_{1}^{*})

Proof.

Regular expressions

Definition of regular expressions

Definition

$L(R)$ denotes the language described by the regular expression R.
R is a regular expression if R is
(1) a for $a \in \Sigma, L(a)=\{a\}$
(2) $\varepsilon, L(\varepsilon)=\{\varepsilon\}$
(3) $\emptyset, L(\emptyset)=\emptyset$
(4) $R_{1}+R_{2}$ where R_{1} and R_{2} are regular expressions, $L\left(R_{1}+R_{2}\right)=L\left(R_{1}\right) \cup L\left(R_{2}\right)$
(5) $R_{1} R_{2}$ where R_{1} and R_{2} are regular expressions, $L\left(R_{1} R_{2}\right)=L\left(R_{1}\right) L\left(R_{2}\right)$
(6) R_{1}^{*} where R_{1} is a regular expression, $L\left(R_{1}^{*}\right)=L\left(R_{1}\right)^{*}$

* has higher precedence than concatenation and +, concatenation has higher precedence than +

Examples of regular expressions

Example

- $(0+1)^{*} 0$ binary strings ending with 0
- $(0+1)^{*} 00(0+1)^{*}$ binary strings with at least two consecutive 0's
- $(0+1+2+3+4+5+6+7+8+9)^{*} 1234(0+1+2+$ $3+4+5+6+7+8+9)^{*}$

Equivalence with finite automata

Theorem
A language is regular if and only if some regular expression describes it

Equivalence with finite automata

Lemma
If a language is described by a regular expression then it is recognized by a NFA

Equivalence with finite automata

Lemma

If a language is described by a regular expression then it is recognized by a NFA

Proof.

- $R=a$ for $a \in \Sigma, L(R)=\{a\}$

- $R=\varepsilon, L(R)=\{\varepsilon\}$

- $R=\emptyset, L(R)=\emptyset$

Equivalence with finite automata

Lemma

If a language is described by a regular expression then it is recognized by a NFA

Proof.

- $R=R_{1}+R_{2}, L(R)=L\left(R_{1}\right) \cup L\left(R_{2}\right)$

Equivalence with finite automata

Lemma

If a language is described by a regular expression then it is recognized by a NFA

Proof.

- $R=R_{1} R_{2}, L(R)=L\left(R_{1}\right) L\left(R_{2}\right)$

Equivalence with finite automata

Lemma

If a language is described by a regular expression then it is recognized by a NFA

Proof.

- $R=R_{1}^{*}, L(R)=L\left(R_{1}\right)^{*}$

Equivalence with finite automata: Example

Equivalence with finite automata

Equivalence with finite automata

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

Idea: Use a generalized NFA (GNFA) where the transition arrows can be labeled by regular expressions

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

Idea: Use a generalized NFA (GNFA) where the transition arrows can be labeled by regular expressions

Given a DFA

- Add a new start state with an ε transition to the old start state
- Add a new accept state with ε transitions from all old accept states
- Replace transitions of the form a, b, c by $a+b+c$

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Add a new start state with an ε transition to the old start state
- Add a new accept state with ε transitions from all old accept states
- Replace transitions of the form a, b, c by $a+b+c$

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Add a new start state with an ε transition to the old start state
- Add a new accept state with ε transitions from all old accept states
- Replace transitions of the form a, b, c by $a+b+c$

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Add a new start state with an ε transition to the old start state
- Add a new accept state with ε transitions from all old accept states
- Replace transitions of the form a, b, c by $a+b+c$
- Eliminate a state different from the start and accept state (reducing the number of states by 1)

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Eliminate a state different from the start and accept state (reducing the number of states by 1)

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Eliminate a state different from the start and accept state (reducing the number of states by 1)

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Eliminate a state different from the start and accept state (reducing the number of states by 1)

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Eliminate q_{2}

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Eliminate q_{2}

Using the rule $R_{1} R_{2}^{*} R_{3}+R_{4}$ the new transition from q_{1} to q_{F} is labeled $11^{*} \varepsilon+\emptyset$

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Eliminate q_{2}

Using the rule $R_{1} R_{2}^{*} R_{3}+R_{4}$ the new transition from q_{1} to q_{F} is labeled $11^{*} \varepsilon+\emptyset$
Using the rule $R_{1} R_{2}^{*} R_{3}+R_{4}$ the new transition from q_{1} to q_{1} is labeled $11^{*} 0+0$

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Eliminate q_{2}

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Eliminate q_{1}

Equivalence with finite automata

Lemma

If a language is recognized by a DFA then it is described by a regular expression

- Eliminate q_{1}

Using the rule $R_{1} R_{2}^{*} R_{3}+R_{4}$ the new transition from q_{s} to q_{F} is labeled $\varepsilon\left(11^{*} 0+0\right)^{*}\left(11^{*} \varepsilon+\emptyset\right)+\emptyset$

Equivalence with finite automata

Lemma
 If a language is recognized by a DFA then it is described by a regular expression

- Eliminate q_{1}

$$
\varepsilon\left(11^{*} 0+0\right)^{*}\left(11^{*} \varepsilon+\emptyset\right)+\emptyset
$$

Equivalence with finite automata

