TDDD14/TDDD85
Slides for Lecture 6
Pumping Lemma
Christer Bäckström, 2017

Let M be a DFA with n states.

Suppose M accepts some string $w = s_1, s_2, \ldots, s_n$ of length n.

Then there must be n+1 states r_0, r_1, \ldots, r_n such that

$$r_0 \stackrel{s_1}{\to} r_1 \stackrel{s_2}{\to} r_2 \cdots \stackrel{s_n}{\to} r_n$$

However, M has only n states, so there must be some i and j such that $r_i = r_j$. Without losing generality, assume i < j.

$$r_0 \xrightarrow{s_1, \dots, s_i} r_i \xrightarrow{s_{j+1}, \dots, s_n} r_n$$

M must also accept $s_0, \ldots, s_i, s_{j+1}, \ldots, s_n$

M must also accept $s_0, ..., s_i, (s_{i+1}, ..., s_j)^2, s_{j+1}, ..., s_n$

and even $s_0, ..., s_i, (s_{i+1}, ..., s_j)^i, s_{j+1}, ..., s_n$ for all $i \ge 1$

Lemma (Pumping lemma):

If L is a regular language, then there exists a positive integer p (the pumping length) such that every string $s \in L$, where $|s| \geq p$, can be partitioned into three pieces, s = xyz, such that the following conditions hold:

- 1. |y| > 0,
- 2. $|xy| \leq p$, and
- 3. for each $i \geq 0$, $xy^iz \in L$.

Proof sketch:

If L is regular, then there is some DFA M that recognizes L. Let p be the number of states of M.

Let $s = s_1, s_2, \ldots, s_n$ be a string in L(M) such that $n \geq p$.

Let r_0, r_1, \ldots, r_n be the states M passes when reading s. Then r_0 is the start state and r_n is an accept state.

Two of the first p+1 states must be the same, i.e. there are i and j ($0 \le i < j \le p$) s.t. $r_i = r_j$.

Partition
$$s$$
 as $s = \underbrace{s_1, \dots, s_i}_{x}, \underbrace{s_{i+1}, \dots, s_j}_{y}, \underbrace{s_{j+1}, \dots, s_n}_{z}$

Since $r_i=r_j$ we can repeat y any number of times, including 0.

Hence, M accepts all strings of the form xy^iz for all $i \geq 0$.

We have

1.
$$|y| > 0$$
, since $y = s_{i+1}, \dots, s_j$ and $i < j$,

2.
$$|xy| \leq p$$
, since $i, j \leq p$,

3.
$$xy^iz \in L(M)$$
 for all $i \ge 0$.

We have now proven the pumping lemma.

Lemma (Pumping lemma):

If L is a regular language, then there exists a positive integer p (the pumping length) such that every string $s \in L$, $|s| \ge p$, can be partitioned into three pieces, s = xyz, such that the following conditions hold:

- 1. |y| > 0,
- 2. $|xy| \leq p$ and
- 3. for each $i \geq 0$, $xy^iz \in L$.

The lemma states a condition for when L is regular. However, we usually use it to prove that languages are not regular.

If we want to prove that a language is not regular, then we must "invert" the lemma.

First rewrite the pumping lemma using logic notation:

 $L \text{ regular} \rightarrow$

$$\exists p > 0 \,\forall s \in L(|s| \ge p) \,\exists x, y, z \,.\, (s = xyz \land |y| > 0 \,\land |xy| \le p \land \forall i \ge 0 \,.\, xy^i z \in L).$$

Some rules of logic:

1.
$$\neg \forall x . \phi(x) \Leftrightarrow \exists x . \neg \phi(x)$$

2.
$$\neg \exists x . \phi(x) \Leftrightarrow \forall x . \neg \phi(x)$$

3.
$$\neg(\phi_1 \land \phi_2 \land \dots, \land \phi_n) \Leftrightarrow (\neg \phi_1 \lor \neg \phi_2 \lor \dots \lor \neg \phi_n)$$
 De Morgan

4.
$$(\phi \lor \psi) \Leftrightarrow (\neg \phi \to \psi)$$

5.
$$(\phi_1 \lor \dots \phi_{n-1} \lor \phi_n) \Leftrightarrow ((\neg \phi_1 \land \dots \land \neg \phi_{n-1}) \to \phi_n)$$
 3+4

6.
$$(\phi \to \psi) \Leftrightarrow (\neg \psi \to \neg \phi)$$

First use rule 6:

L not regular \leftarrow

$$\neg \exists p > 0 \,\forall s \in L(|s| \ge p) \,\exists x, y, z \,.\, (s = xyz \land |y| > 0 \,\land |xy| \le p \land \forall i \ge 0 \,.\, xy^i z \in L).$$

This expression is equivalent to the pumping lemma, but the RHS of the implication now states a condition for when L is not regular. We want to rewrite the RHS to a more useful form.

Use rule 2:

$$\forall p > 0 \ \neg \forall s \in L(|s| \ge p) \ \exists x, y, z \ . \ (s = xyz \land |y| > 0 \land |xy| \le p \land \forall i \ge 0 \ . \ xy^iz \in L.$$

Use rule 1:

$$\forall p > 0 \,\exists s \in L(|s| \ge p) \, \neg \exists x, y, z \, . \, (s = xyz \wedge |y| > 0 \, \wedge \, |xy| \le p \wedge \forall i \ge 0 \, . \, xy^i z \in L).$$

Use rule 2:

$$\forall p > 0 \,\exists s \in L(|s| \ge p) \,\forall x, y, z \,.\, \neg(s = xyz \land |y| > 0 \land |xy| \le p \land \forall i \ge 0 \,.\, xy^i z \in L).$$

Use rule 3 (De Morgan)

$$\forall p > 0 \,\exists s \in L(|s| \ge p) \,\forall x, y, z \,.\, (s \ne xyz \vee |y| \not > 0 \vee |xy| > p \vee \neg \forall i \ge 0 \,.\, xy^i z \in L).$$

Use rule 1 on the innermost quantifier:

$$\forall p > 0 \,\exists s \in L(|s| \geq p) \,\forall x, y, z \,.\, (s \neq xyz \vee |y| \not> 0 \vee |xy| > p \vee \exists i \geq 0 \,.\, xy^i z \not\in L).$$

Finally, turn the disjunction into an implication, using rule 5:

$$\forall p > 0 \,\exists s \in L(|s| \ge p) \,\forall x, y, z \,. \, ((s = xyz \land |y| > 0 \land |xy| \le p)$$
$$\rightarrow \exists i \ge 0 \,. \, xy^i z \not\in L).$$

Hence, to prove that a language L is not regular, we must:

- 1. Assume an arbitrary pumping length p (we cannot choose it).
- 2. Choose a suitable string $s \in L$.
- 3. Show that for <u>all possible choices</u> of strings x,y,z s.t. s=xyz, |y|>0 and $|xy|\leq p$, there is some $i\geq 0$ s.t. $xy^iz\not\in L$.

Example: Prove that $L = \{a^nb^n \mid n \ge 0\}$ is not regular.

Assume L has a pumping length p. Choose $s=a^pb^p$, which is in L.

For all choices of x, y, z s.t. s = xyz, |y| > 0 and $|xy| \le p$, the string xy can only contain a, so it must hold that

- 1. $y = a^m$ for some m > 0,
- 2. $x = a^k$ for some $k \ge 0$ s.t. $k + m \le p$ and
- 3. $z = a^{p-k-m}b^p$.

(Note that the constraints on k and m cover all possible choices of x, y and z, and we have $xyz=a^ka^ma^{p-k-m}b^p=a^pb^p=s$).

We must prove that there is an i > 0 such that $xy^iz \notin L$.

Choose i=2. We get $xy^2z=a^ka^{2m}a^{p-k-m}b^p=a^{p+m}b^p\not\in L$.

It follows that L cannot be regular.