TDDD14/TDDD85

Slides for Lecture 6
Pumping Lemma
Christer Bäckström, 2017

Let M be a DFA with n states.
Suppose M accepts some string $w=s_{1}, s_{2}, \ldots, s_{n}$ of length n.

Then there must be $n+1$ states $r_{0}, r_{1}, \ldots, r_{n}$ such that

$$
r_{0} \xrightarrow{s_{1}} r_{1} \xrightarrow{s_{2}} r_{2} \cdots \xrightarrow{s_{n}} r_{n}
$$

However, M has only n states, so there must be some i and j such that $r_{i}=r_{j}$. Without losing generality, assume $i<j$.

M must also accept $s_{0}, \ldots, s_{i}, s_{j+1}, \ldots, s_{n}$

M must also accept $s_{0}, \ldots, s_{i},\left(s_{i+1}, \ldots, s_{j}\right)^{2}, s_{j+1}, \ldots, s_{n}$ and even $s_{0}, \ldots, s_{i},\left(s_{i+1}, \ldots, s_{j}\right)^{i}, s_{j+1}, \ldots, s_{n}$ for all $i \geq 1$

Lemma (Pumping lemma):

If L is a regular language, then there exists a positive integer p (the pumping length) such that every string $s \in L$, where $|s| \geq p$, can be partitioned into three pieces, $s=x y z$, such that the following conditions hold:

1. $|y|>0$,
2. $|x y| \leq p$, and
3. for each $i \geq 0, x y^{i} z \in L$.

Proof sketch:

If L is regular, then there is some DFA M that recognizes L.
Let p be the number of states of M.
Let $s=s_{1}, s_{2}, \ldots, s_{n}$ be a string in $L(M)$ such that $n \geq p$.

Let $r_{0}, r_{1}, \ldots, r_{n}$ be the states M passes when reading s.
Then r_{0} is the start state and r_{n} is an accept state.

Two of the first $p+1$ states must be the same, i.e. there are i and $j(0 \leq i<j \leq p)$ s.t. $r_{i}=r_{j}$.

Partition s as $s=\underbrace{s_{1}, \ldots, s_{i}}_{x}, \underbrace{s_{i+1}, \ldots, s_{j}}_{y}, \underbrace{s_{j+1}, \ldots, s_{n}}_{z}$

Since $r_{i}=r_{j}$ we can repeat y any number of times, including 0 .
Hence, M accepts all strings of the form $x y^{i} z$ for all $i \geq 0$.

We have

1. $|y|>0$, since $y=s_{i+1}, \ldots, s_{j}$ and $i<j$,
2. $|x y| \leq p$, since $i, j \leq p$,
3. $x y^{i} z \in L(M)$ for all $i \geq 0$.

We have now proven the pumping lemma.

Lemma (Pumping lemma):
If L is a regular language, then there exists a positive integer p (the pumping length) such that every string $s \in L,|s| \geq p$, can be partitioned into three pieces, $s=x y z$, such that the following conditions hold:

1. $|y|>0$,
2. $|x y| \leq p$ and
3. for each $i \geq 0, x y^{i} z \in L$.

The Iemma states a condition for when L is regular. However, we usually use it to prove that languages are not regular.

If we want to prove that a language is not regular, then we must "invert" the lemma.

First rewrite the pumping lemma using logic notation:
L regular \rightarrow

$$
\begin{gathered}
\exists p>0 \forall s \in L(|s| \geq p) \exists x, y, z \cdot(s=x y z \wedge|y|>0 \wedge|x y| \leq p \wedge \\
\left.\forall i \geq 0 . x y^{i} z \in L\right)
\end{gathered}
$$

Some rules of logic:

1. $\neg \forall x . \phi(x) \Leftrightarrow \exists x . \neg \phi(x)$
2. $\neg \exists x . \phi(x) \Leftrightarrow \forall x . \neg \phi(x)$
3. $\neg\left(\phi_{1} \wedge \phi_{2} \wedge \ldots, \wedge \phi_{n}\right) \Leftrightarrow\left(\neg \phi_{1} \vee \neg \phi_{2} \vee \cdots \vee \neg \phi_{n}\right)$

De Morgan
4. $(\phi \vee \psi) \Leftrightarrow(\neg \phi \rightarrow \psi)$
5. $\left(\phi_{1} \vee \ldots \phi_{n-1} \vee \phi_{n}\right) \Leftrightarrow\left(\left(\neg \phi_{1} \wedge \cdots \wedge \neg \phi_{n-1}\right) \rightarrow \phi_{n}\right)$
$3+4$
6. $(\phi \rightarrow \psi) \Leftrightarrow(\neg \psi \rightarrow \neg \phi)$

First use rule 6:
L not regular \leftarrow

$$
\begin{gathered}
\neg \exists p>0 \forall s \in L(|s| \geq p) \exists x, y, z \cdot(s=x y z \wedge|y|>0 \wedge|x y| \leq p \wedge \\
\left.\forall i \geq 0 . x y^{i} z \in L\right)
\end{gathered}
$$

This expression is equivalent to the pumping lemma, but the RHS of the implication now states a condition for when L is not regular. We want to rewrite the RHS to a more useful form.

Use rule 2 :

$$
\begin{gathered}
\forall p>0 \neg \forall s \in L(|s| \geq p) \exists x, y, z \cdot(s=x y z \wedge|y|>0 \wedge|x y| \leq p \wedge \\
\forall i \geq 0 . x y^{i} z \in L
\end{gathered}
$$

Use rule 1:

$$
\begin{gathered}
\forall p>0 \exists s \in L(|s| \geq p) \neg \exists x, y, z \cdot(s=x y z \wedge|y|>0 \wedge|x y| \leq p \wedge \\
\left.\forall i \geq 0 . x y^{i} z \in L\right)
\end{gathered}
$$

Use rule 2:

$$
\begin{gathered}
\forall p>0 \exists s \in L(|s| \geq p) \forall x, y, z \cdot \neg(s=x y z \wedge|y|>0 \wedge|x y| \leq p \wedge \\
\left.\forall i \geq 0 . x y^{i} z \in L\right)
\end{gathered}
$$

Use rule 3 (De Morgan)

$$
\begin{gathered}
\forall p>0 \exists s \in L(|s| \geq p) \forall x, y, z .(s \neq x y z \vee|y| \ngtr 0 \vee|x y|>p \vee \\
\left.\neg \forall i \geq 0 . x y^{i} z \in L\right) .
\end{gathered}
$$

Use rule 1 on the innermost quantifier:

$$
\begin{gathered}
\forall p>0 \exists s \in L(|s| \geq p) \forall x, y, z .(s \neq x y z \vee|y| \ngtr 0 \vee|x y|>p \vee \\
\left.\exists i \geq 0 . x y^{i} z \notin L\right) .
\end{gathered}
$$

Finally, turn the disjunction into an implication, using rule 5:

$$
\begin{gathered}
\forall p>0 \exists s \in L(|s| \geq p) \forall x, y, z \cdot((s=x y z \wedge|y|>0 \wedge|x y| \leq p) \\
\left.\rightarrow \exists i \geq 0 \cdot x y^{i} z \notin L\right) .
\end{gathered}
$$

Hence, to prove that a language L is not regular, we must:

1. Assume an arbitrary pumping length p (we cannot choose it).
2. Choose a suitable string $s \in L$.
3. Show that for all possible choices of strings x, y, z s.t. $s=x y z,|y|>0$ and $|x y| \leq p$, there is some $i \geq 0$ s.t. $x y^{i} z \notin L$.

Example: Prove that $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.

Assume L has a pumping length p.
Choose $s=a^{p} b^{p}$, which is in L.

For all choices of x, y, z s.t. $s=x y z,|y|>0$ and $|x y| \leq p$, the string $x y$ can only contain a, so it must hold that

1. $y=a^{m}$ for some $m>0$,
2. $x=a^{k}$ for some $k \geq 0$ s.t. $k+m \leq p$ and
3. $z=a^{p-k-m} b^{p}$.
(Note that the constraints on k and m cover all possible choices of x, y and z, and we have $x y z=a^{k} a^{m} a^{p-k-m} b^{p}=a^{p} b^{p}=s$).

We must prove that there is an $i>0$ such that $x y^{i} z \notin L$.

Choose $i=2$. We get $x y^{2} z=a^{k} a^{2 m} a^{p-k-m} b^{p}=a^{p+m} b^{p} \notin L$.
It follows that L cannot be regular.

