TDDD14/TDDD85 Slides for Lecture 3, 2017

Slides originally for TDDD65 by Gustav Nordh

Some differences to Kozen:

- Kozen allows a set of start states. It may be convenient sometimes, but does not add anything. It is easier to use a single start state and ε -transitions.
- Kozen uses Δ instead of δ for the transition function of an NFA.
- Kozen defines acceptance for NFA by an additional recursive function $\hat{\Delta}$, as for DFA. However, his definition works only for ordinary NFA, not ε -NFA.
- Kozen defines the subset construction method only for ordinary NFAs, not for ε -NFAs.

Nondeterminism

- The machines we have seen so far have been deterministic. The next state follows uniquely from the current state and the input symbol
- In a nondeterministic machine several possible next states may follow from the current state and input symbol. These possibilities can be thought of as being explored in parallel
- Understanding the power of nondeterminism is a central topic in the theory of computation (and this course)

- An NFA accepts a string s if, after reading the last symbol of s, at least one of its active states is an accept state
- An NFA rejects a string s if, after reading the last symbol of s, none if its active states is an accept state

010<u>1</u> REJECT

<u>1</u>10

<u>1</u>10

110 ACCEPT

01 ACCEPT

Definition of NFAs

The power set of Q, written $\mathcal{P}(Q)$, is the set of all subsets of Q

Example

If
$$A = \{1, 2\}$$
 then $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

Definition of NFAs

Definition

A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set called the states
- \bullet Σ is a finite set called the alphabet
- $\delta: \mathbf{Q} \times (\mathbf{\Sigma} \cup \{\varepsilon\}) \to \mathcal{P}(\mathbf{Q})$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

The language recognized by a NFA

Definition

Let $N = (Q, \Sigma, \delta, q_0, F)$ be a NFA and $s = s_1 s_2 \cdots s_m$ a string over Σ . N accepts s if there is a sequence of states $r_0, r_1, \ldots r_n$ from Q and s can be written as $s = s_1, s_2 \ldots, s_n$ where each $s_i \in \Sigma \cup \{\varepsilon\}$ such that

- $r_0 = q_0$,
- $r_{i+1} \in \delta(r_i, s_{i+1})$ (i = 0, ..., n-1), and
- \bullet $r_n \in F$

Definition

Two machines are equivalent if they recognize the same language

Theorem

Every NFA has an equivalent DFA

Theorem

Every NFA has an equivalent DFA

Proof idea.

Given a NFA we need to construct a DFA that simulate the NFA

- The DFA need to keep track of the set of active states of the NFA at each step
- If k is the number of states of the NFA, then the DFA might need up to 2^k states (one for each subset of states of the NFA)
- So, the states of the DFA should be $\mathcal{P}(Q)$ where Q is the states of the NFA

Theorem

Every NFA has an equivalent DFA

Notation: Let E(R) be the set of states that can be reached from R using 0 or more ε transitions.

Theorem

Every NFA has an equivalent DFA

Notation: Let E(R) be the set of states that can be reached from R using 0 or more ε transitions.

Proof.

The subset construction: Given a NFA $N = (Q, \Sigma, \delta, q_0, F)$ we construct an equivalent DFA $M = (Q', \Sigma, \delta', q'_0, F')$ where

- $Q' = \mathcal{P}(Q)$
- $q_0' = E(\{q_0\})$
- $F' = \{R \in Q' \mid R \cap F \neq \emptyset\}$

Theorem

Every NFA has an equivalent DFA

Notation: Let E(R) be the set of states that can be reached from R using 0 or more ε transitions.

Proof.

The subset construction: Given a NFA $N = (Q, \Sigma, \delta, q_0, F)$ we construct an equivalent DFA $M = (Q', \Sigma, \delta', q'_0, F')$ where

• For $R \in Q'$ and $a \in \Sigma$, $\delta'(R, a) = \{q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R\}$

 $\delta'(R, a)$ is the set of all states that can be reached (in the NFA) by first following a transition labeled a from a state in R and then following 0 or more ε transitions

	0	1
$ o \{s,q_1,p\}$	$\{q_1, p\}$	$\{q_2, p, q\}$

	0	1
$ o \{s,q_1,p\}$	$\{q_1, p\}$	$\{q_2, p, q\}$
$\{q_1,p\}$	$\{q_1, p\}$	$\{q_2, p, q\}$

	0	1
$ o \{s,q_1,p\}$	$\{q_1, p\}$	$\{q_2, p, q\}$
$\{q_1,p\}$	$\{q_1, p\}$	$\{q_2, p, q\}$
$F\left\{q_2,p,q\right\}$	$\{q_1, p, r\}$	$\{q_2, p, q, r\}$

	0	1
$ o \{s, q_1, p\}$	$\{q_1, p\}$	$\{q_2, p, q\}$
$\{q_1,p\}$	$\{q_1, p\}$	$\{q_2, p, q\}$
$F\left\{q_2,p,q\right\}$	$\{q_1, p, r\}$	$\{q_2, p, q, r\}$
$F\left\{q_1,p,r\right\}$	$\{q_1, p\}$	$\{q_2, p, q\}$

	0	1
$ o \{s,q_1,p\}$	$\{q_1,p\}$	$\{q_2, p, q\}$
$\{q_1, p\}$	$\{q_1, p\}$	$\{q_2, p, q\}$
$F\left\{q_2,p,q\right\}$	$\{q_1, p, r\}$	$\{q_2, p, q, r\}$
$F\left\{q_1,p,r\right\}$	$\{q_1, p\}$	$\{q_2, p, q\}$
$F\left\{q_2,p,q,r\right\}$	$\{q_1, p, r\}$	$\{q_2, p, q, r\}$

Theorem

Every NFA has an equivalent DFA

Corollary

Every language recognized by a NFA can be recognized by a DFA