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Some differences to Kozen:

- Kozen allows a set of start states. It may be convenient some-
times, but does not add anything. It is easier to use a single
start state and e-transitions.

- Kozen uses A instead of § for the transition function of an NFA.
- Kozen defines acceptance for NFA by an additional recursive
function A, as for DFA. However, his definition works only for
ordinary NFA, not e-NFA.

- Kozen defines the subset construction method only for ordinary
NFAs, not for e-NFAs.



Nondeterminism

@ The machines we have seen so far have been
deterministic. The next state follows uniquely from the
current state and the input symbol

@ In a nondeterministic machine several possible next states
may follow from the current state and input symbol. These
possibilities can be thought of as being explored in parallel

@ Understanding the power of nondeterminism is a central
topic in the theory of computation (and this course)



Example of a nondeterminstic finite automaton (NFA)
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Example of a nondeterminstic finite automaton (NFA)

@ An NFA accepts a string s if, after reading the last symbol
of s, at least one of its active states Is an accept state

@ An NFA rejects a string s if, after reading the last symbol of
S, none if its active states is an accept state
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Example of a NFA with ¢ transitions
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Example of a NFA with ¢ transitions
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Definition of NFAS

The power set of Q, written P(Q), is the set of all subsets of Q

Example
If A ={1,2} then P(A) = {0, {1},{2},{1,2}}




Definition of NFAS

Definition
A nondeterministic finite automaton (NFA) is a 5-tuple
(Q,X,6,q0,F) where
@ Q is a finite set called the states
@ X Is a finite set called the alphabet
@ 0:Q x (XU{e}) — P(Q) is the transition function
@ (o € Q Is the start state
@ F C Q is the set of accept states




The language recognized by a NFA

Definition

LetN = (Q,X%,6,90,F) be a NFAand s = s;S;, - - - Sy a string
over .. N accepts s if there is a sequence of states ro,rq,...In
from Q and s can be written as s = S;,S, ..., Sy, Where each

Si € £ U{e} such that

o 'o = o,
® .1 €4(r,sSiz1) 1i=0,...,n—-1),and
@rekF




Equivalence of DFAs and NFAs

Definition
Two machines are equivalent if they recognize the same
language




Equivalence of DFAs and NFAs _

Theorem
Every NFA has an equivalent DFA l



Equivalence of DFAs and NFAs

Theorem
Every NFA has an equivalent DFA J

Proof idea.
Given a NFA we need to construct a DFA that simulate the NFA

@ The DFA need to keep track of the set of active states of
the NFA at each step

@ If k is the number of states of the NFA, then the DFA might

need up to 2¥ states (one for each subset of states of the
NFA)

@ So, the states of the DFA should be P(Q) where Q is the
states of the NFA
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Equivalence of DFAs and NFAs

Theorem
Every NFA has an equivalent DFA

Notation: Let E(R) be the set of states that can be reached
from R using O or more ¢ transitions.



Equivalence of DFAs and NFAs

Theorem
Every NFA has an equivalent DFA

Notation: Let E(R) be the set of states that can be reached
from R using O or more ¢ transitions.

Proof.

The subset construction: Given a NFAN = (Q, %, 4,99, F) we
construct an equivalent DFAM = (Q', X, ', q;, F') where

° Q'=7(Q)

® dy = E({do})
o F' ={RcQ |RNF #0)




Equivalence of DFAs and NFAs

Theorem
Every NFA has an equivalent DFA

Notation: Let E(R) be the set of states that can be reached
from R using O or more ¢ transitions.

Proof.

The subset construction: Given a NFAN = (Q, X, 9, qg, F) we
construct an equivalent DFAM = (Q', X, ', q;, F') where
@ ForReQ andacx,
d(R,a)={geQ|qeE((r,a)) for somer € R}

¢'(R,a) is the set of all states that can be reached (in the
NFA) by first following a transition labeled a from a state in
R and then following O or more ¢ transitions

[]
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Equivalence of DFAs and NFAs: Example
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{g1,p} {d1,p} | {92,pP,q}

F {d2,p,q} {d1,p,r} | {d2,p,q,r}
F {g1,p,r} {a.,p} | {92,p,q}
F {a2,p,q,r} | {q1,p,r} | {92,p,q,r}




Equivalence of DFAs and NFAs: Example




Equivalence of DFAs and NFAs

Theorem
Every NFA has an equivalent DFA

Corollary

Every language recognized by a NFA can be recognized by a
DFA




