TDDD14/TDDD85 Slides for Lecture 6 Myhill-Nerode Relations Christer Bäckström, 2017

Myhill-Nerode Relations

- Let Σ be an alphabet.
- Let $L \subseteq \Sigma^*$ be a language
- Let \equiv be an equivalence relation on Σ^* .
- Then \equiv is a *Myhill-Nerode relation* for L if it satisfies:
- 1. It is *right congruent* i.e. for all $x, y \in \Sigma^*$ and all $a \in \Sigma$, if $x \equiv y$, then $xa \equiv ya$.
- 2. It refines L, i.e. if $x \equiv y$, then $x \in L \Leftrightarrow y \in L$.

3. It is of finite index,i.e. it has a finite number of equivalence classes.

Note:

 \equiv is an equivalence relation on the strings in Σ^* . (The relation \approx in a previous lecture was an equivalence relation on the states of a DFA.)

Even if the number of equivalence classes of \equiv is finite, the size of each class need not be finite. (At least one of them must contain an infinite number of strings since Σ^* is infinite.)

Construction $M \mapsto \equiv_M$

Let M be a DFA over an alphabet Σ with start state q_0 such that all states are accessible from q_0 .

Define the relation \equiv_M on Σ^* such that $x \equiv_M y$ iff $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$.

Then \equiv_M is an equivalence relation on Σ^* .

We will show that \equiv_M is also a Myhill-Nerode relation for L(M).

1. Let x and y be arbitrary strings in Σ^* and let a be an arbitrary symbol in Σ .

Assume $x \equiv_M y$. Then $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$ by definition.

We get

$$\widehat{\delta}(q_0, x_a) = \delta(\widehat{\delta}(q_0, x), a) = \delta(\widehat{\delta}(q_0, y), a) = \widehat{\delta}(q_0, y_a).$$

That is, \equiv_M is right congruent.

2. Let x and y be arbitrary strings in Σ^* .

Assume $x \equiv_M y$. Then $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$.

Obviously, M either accepts both x and yor M rejects both x and y, so $x \in L(M)$ iff $y \in L(M)$.

That is, \equiv_M refines L(M).

3. For each $x \in \Sigma^*$, the equivalence class of x is $[x] = \{y \in \Sigma^* \mid x \equiv_M y\} = \{y \in \Sigma^* \mid \widehat{\delta}(q_0, y) = \widehat{\delta}(q_0, x)\}.$

Let $Q = \{q_0, \ldots, q_n\}$ be the states of M.

For each i ($0 \le i \le n$), let $x_i \in \Sigma$ be a string such that $\hat{\delta}(q_0, x_i) = q_i$. (Such a string must exist since we assume all states are accessible from q_0 .)

Then, $[x_i] \neq [x_j]$ for all $i \neq j$, i.e. there is an equivalence class $[x_i]$ for each state $q_i \in Q$.

Suppose there is a string $y \in \Sigma^*$ s.t. $[y] \neq [x_i]$ for all $i \ (0 \le i \le n)$. Then $\hat{\delta}(q_0, y) \neq q_i$ for all $q_i \in Q$. This is impossible, so \equiv_M must have exactly n + 1 equivalence classes. That is, \equiv_M satisfies conditions 1–3 so it is a Myhill-Nerode relation for L(M).

Since L(M) must be a regular language, it follows that we can define a Myhill-Nerode relation for every regular language.

Construction $\equiv \mapsto M_{\equiv}$

Let Σ be an alphabet and $L \subseteq \Sigma^*$ a language. Suppose \equiv is a Myhill-Nerode relation for L.

Then \equiv has a finite number of equivalence relations, so we can construct a DFA $M_{\equiv} = (Q, \Sigma, \delta, q_0, F)$ for L as follows:

• $Q = \{ [x] \mid x \in \Sigma^* \}$

•
$$q_0 = [\varepsilon$$

•
$$F = \{ [x] \mid x \in L \}$$

• $\delta([x], a) = [xa].$

Then $L(M_{\equiv}) = L$ (see book for proof).

That is, if a language L has a Myhill-Nerode relation, then it must be regular.

Regular Languages and Myhill-Nerode Relations

The previous two constructions give the following result:

Let L be a language over some alphabet. Then

L is regular iff there is a Myhill-Nerode relation for L.

Automata Isomorphism

Let $M = (Q^M, \Sigma, \delta^M, q_0^M, F^M)$ and $N = (Q^N, \Sigma, \delta^N, q_0^N, F^N)$ be two DFAs.

Then M and N are isomorphic if there exists a bijective function $f: Q^M \to Q^N$ such that

1.
$$f(q_0^M) = q_0^N$$
,

2.
$$f(\delta^M(p,a)) = \delta^N(f(p),a)$$
 for all $p \in Q^M$ and $a \in \Sigma$,

3.
$$p \in F^M$$
 iff $f(p) \in F^N$.

That is we can rename the states of M so it becomes identical to N.

The following two DFAs are isomorphic:

A Closer Analysis of the Constructions

We have shown two constructions:

 $M \mapsto \equiv_M$: Given a DFA, construct a Myhill-Nerode relation \equiv_M

 $\equiv \mapsto M_{\equiv}$: Given a Myhill-Nerode relation, construct a DFA.

These constructions are inverses of each other in the following sense.

Let L be a regular language with a Myhill-Nerode relation \equiv .

1. Construct the DFA M_{\equiv} for \equiv .

2. Then define the equivalence relation $\equiv_{M=}$.

That is, we do $\equiv \mapsto M_{\equiv} \mapsto \equiv_{M_{\equiv}}$

Then \equiv and $\equiv_{M_{\equiv}}$ are the same relation.

Let M be a DFA with no inaccessible states.

- 1. Construct the Myhill-Nerode relation \equiv_M for L(M).
- 2. Then construct the DFA M_{\equiv_M} for \equiv_M .

That is, we do $M \mapsto \equiv_M \mapsto M_{\equiv_M}$

Then M and M_{\equiv_M} are isomorphic.

Myhill-Nerodes Theorem

Recall that a relation on Σ^* is a subset of $\Sigma^* \times \Sigma^*$, i.e. a set of pairs of strings.

Let \equiv_1 and \equiv_2 be two equivalence relations on Σ^* .

Then \equiv_1 refines \equiv_2 if $\equiv_1 \subseteq \equiv_2$ (i.e. if $x \equiv_1 y \Rightarrow x \equiv_2 y$).

We say that \equiv_1 is *finer* than \equiv_2 and that \equiv_2 is *coarser* than \equiv_1 .

The finest possible relation is $\{(x, x) \mid x \in \Sigma^*\}$. The coarsest possible relation is $\{(x, y) \mid x, y \in \Sigma^*\}$. Let Σ be an alphabet and let $L \subseteq \Sigma^*$ be a language. (*L* need not be regular.)

Define the relation \equiv_L such that for all $x, y \in \Sigma^*$,

$$x \equiv_L y$$
 iff for all $z \in \Sigma^*(xz \in L \Leftrightarrow yz \in L)$

Then \equiv_L is the coarsest possible relation for L that satisfies conditions 1 and 2 for Myhill-Nerode relations.

Theorem (Myhill-Nerode): Let $L \subseteq \Sigma^*$ be a language. Then the following statements are equivalent:

- 1. L is regular,
- 2. there exists a Myhill-Nerode relation for L,
- 3. the relation \equiv_L has a finite number of equivalence classes.