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Equivalence Relations

A binary relation R on a set S is an equivalence relation if it
satisfies the following three properties:
- reflexive: R(x, x) for all x ∈ S
- symmetric: R(x, y)⇒ R(y, x)

- transitive: R(x, y) and R(y, z)⇒ R(x, z)

Example: Let Σ = {0,1}. Def. relation R on Σ∗ such that
R(x, y) iff |x| = |y|.

- For all x, |x| = |x|. Reflexive
- If |x| = |y|, then |y| = |x|. Symmetric.
- If |x| = |y| and |y| = |z|, then |x| = |z|. Transitive.



Each string x ∈ Σ∗ has an associated equivalence class [x], de-
fined as [x] = {y ∈ Σ∗ | R(x, y)}.

In the example, [x] is the set of all strings that have the same
length as x, including x.

[ε] = {ε}
[0] = [1] = {0,1}
[00] = [01] = [10] = [11] = {00,01,10,11}
etc.

An infinite number of equivalence classes in this case.



It follows from the definition that each element belongs to ex-
actly one equivalence class.

Let S be a set and R an equivalence relation on S.
Let P be the set of all equivalence classes for R.
Then P is a partition of S, i.e.
- Each equivalence class is non-empty
- P covers S, i.e. every x ∈ S belongs to some equivalence class.
- If X and Y are equivalence classes s.t. X 6= Y , then X∩Y = ∅.

In the example, R gives a partition with one equivalence class Pi
for each i ∈ N, such that Pi = {|x| ∈ Σ∗ | |x| = i}.

For instance P0 = [ε] and P3 = [001].



Let δ̂ be the extension of δ to strings, defined such that for all
states p ∈ Q:

• δ̂(p, ε) = p

• δ̂(p, xa) = δ(δ̂(p, x), a) for all x ∈ Σ∗ and all a ∈ Σ



Quotient Automata

Consider collapsing two states p and q to one state in a DFA.

1. We cannot collapse p and q if p ∈ F and q 6∈ F (we must be
distinguish between accept and reject).

2. If we collapse p and q and there is some a ∈ Σ such that
δ(p, a) 6= δ(q, a), then we must collapse also δ(p, a) and δ(q, a) to
one state. Otherwise we have two choices on symbol a.

Combining 1 and 2 gives that we can collapse p and q to one
state, unless there is some string x ∈ Σ∗ such that δ̂(p, x) ∈ F
and δ̂(q, x) 6∈ F .



Define the binary relation ≈ on the set Q of states such that

p ≈ q holds if and only if for all x ∈ Σ∗ (δ̂(p, x) ∈ F ⇔ δ̂(q, x) ∈ F ).

Then ≈ has the properties:
1. p ≈ p for all p (reflexive)
2. if p ≈ q, then q ≈ p (symmetric)
3. if p ≈ q and q ≈ r, then p ≈ r (transitive)

That is, ≈ is an equivalence relation on Q.

This defines an equivalence class [p] for every state p as
[p] = {q | q ≈ p}.

Recall that an equivalence relation defines a partition, so every
state belong to exactly one equivalence class, i.e.
p ≈ q if and only if [p] = [q].



Let M = 〈Q,Σ, δ, s, F 〉 be a DFA.
Let ≈ be defined on Q as above.

We can then construct an equivalent DFA M/≈ that has one
state for each equivalence class of ≈.

Define M/≈ = 〈Q′,Σ, δ′, s′, F ′〉 where
• Q′ = {[p] | p ∈ Q}
• δ′([p], a) = [δ(p, a)]

• s′ = [s]

• F ′ = {[p] | p ∈ F}
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If we have just read 0, then we must be in a or c.
If we have just read 1, then we must be in b or d.

Hence, for all x ∈ Σ∗:
δ̂(a, x0) 6∈ F and δ̂(c, x0) 6∈ F
δ̂(a, x1) ∈ F and δ̂(c, x1) ∈ F

It follows that δ̂(a, y) ∈ F ⇔ δ̂(c, y) ∈ F for all y ∈ Σ∗

so a ≈ c.
We similarily get that b ≈ d.



We have [a] = [c] and [b] = [d], so M/≈ has two states.
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M/≈ [a] [b]
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These two DFAs accept the same language.



Theorem: L(M) = L(M/≈)

Proof: We claim that for all p ∈ Q and all x ∈ Σ∗, it holds that
δ̂(p, x) ∈ F iff δ̂′([p], x) ∈ F ′.
Proof by induction over the length of x.

Base case: |x| = 0, so x = ε.
We have δ̂(p, ε) = p and δ̂′([p], ε) = [p].
We have p ∈ F iff [p] ∈ F ′ by def. of M/≈.
Hence, δ̂(p, ε) ∈ F iff δ̂′([p], ε) ∈ F ′



Induction step: Suppose the claim holds for all strings of length
n, for some n ≥ 0. We must prove that it holds also for strings
of length n+ 1.
Let a ∈ Σ and x ∈ Σn. Then |ax| = n+ 1.
Let q = δ(p, a)

Then δ′([p], a) = [δ(p, a)] = [q].
It follows from the induction hypothesis that δ̂(q, x) ∈ F iff
δ̂′([q], x) ∈ F ′.
Hence, δ̂(p, ax) ∈ F iff δ̂′([p], ax) ∈ F ′.

This proves the claim, so it follows that for all x ∈ Σ∗, it holds
that δ̂(s, x) ∈ F iff δ̂′([s], x) ∈ F ′.
That is, L(M) = L(M/≈)



Minimization Algorithm

Recall these observations:

1. We cannot collapse p and q if p ∈ F and q 6∈ F (we must be
distinguish between accept and reject).

2. If we collapse p and q and there is some a ∈ Σ such that
δ(p, a) 6= δ(q, a), then we must collapse also δ(p, a) and δ(q, a) to
one state. Otherwise we have two choices on symbol a.

Note that 2 implies the following:
if δ(p, a) and δ(q, a) cannot be collapsed, then we cannot collapse
p and q either.



The idea for the algorithm is to iteratively mark all pairs that
cannot be collapsed.

First mark all pairs p and q that break rule 1.

Then work backwards from the marked pairs. If a pair p and q

is unmarked but rule 2 requires that we also collapse a pair that
is already marked, then we mark also the pair p and q since it
cannot be collapsed.



Make a table with one entry for each combination of two different
states. (Note, there is no order on the states in an entry).
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Marking Algorithm:

1. For all pairs of states {p, q}
if p ∈ F and q 6∈ F , then mark {p, q}

2. For all unmarked pairs of states {p, q}
if there is some a ∈ Σ such that {δ(p, a), δ(q, a)} is marked
then mark {p, q}.

3. Repeat 2 until no new pair is marked.

If {p, q} is still unmarked, then p ≈ q.



Step 1 (iteration 0).
Mark all pairs {p, q} such that p ∈ F and q 6∈ F .
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Step 2, iteration 1:
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{a, c} : {delta(a,0), δ(c,0)} = {a, b} is marked, so mark {a, c}
{a, d} : {delta(a,0), δ(d,0)} = {a, e} is marked, so mark {a, d}
{a, f} : {delta(a,0), δ(f,0)} = {a, f} is unmarked, so check also 1
{a, f} : {delta(a,1), δ(f,1)} = {b, e} is unmarked, so don’t mark!



Step 2, iteration 1 cont’d:
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{b, e} : {δ(b,0), δ(e,0)} = {b, e} is unmarked, so check also 1
{b, e} : {δ(b,1), δ(e,1)} = {c, d} is unmarked, so don’t mark!
{c, d} : {delta(c,0), δ(d,0)} = {b, e} is unmarked, so check also 1
{c, d} : {delta(c,1), δ(d,1)} = {f, a} is unmarked, so don’t mark!
{c, f} : {delta(c,0), δ(f,0)} = {b, f} is marked, so mark {c, f}
{d, f} : {delta(d,0), δ(f,0)} = {e, f} is marked, so mark {d, f}



Step 2, iteration 2:
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{a, f} : {δ(a,0), δ(f,0)} = {a, f} is unmarked, so check also 1
{a, f} : {δ(a,1), δ(f,1)} = {b, e} is unmarked, so don’t mark!
{b, e} : {δ(b,0), δ(e,0)} = {b, e} is unmarked, so check also 1
{b, e} : {δ(b,1), δ(e,1)} = {c, d} is unmarked, so don’t mark!
{c, d} : {delta(c,0), δ(d,0)} = {b, e} is unmarked, so check also 1
{c, d} : {delta(c,1), δ(d,1)} = {f, a} is unmarked, so don’t mark!



Step 2, iteration 2:
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Nothing more was marked in iteration 2, so we terminate.
The pairs {a, f}, {b, e} and {c, d} are unmarked.

We get a ≈ f , b ≈ e and c ≈ d.



We get a minimal DFA

M/≈ [a] [b] [c]
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