TDDD14/TDDD85
Slides for Lecture 5
Minimization of Automata
Christer Backstrom, 2018

Equivalence Relations

A binary relation R on a set S is an equivalence relation if it
satisfies the following three properties:

- reflexive: R(x,x) forall z € S

- symmetric: R(x,y) = R(y,x)

- transitive: R(x,y) and R(y,z) = R(x, z)

Example: Let X = {0,1}. Def. relation R on X* such that
R(z,y) iff |z| = |yl.

- For all z, |x| = |z|. Reflexive
- If |z| = |y|, then |y| = |x|]. Symmetric.
- If || = |y| and |y| = |z|, then |z| = |z|. Transitive.

Each string x € X* has an associated equivalence class [x], de-
fined as [z] = {y € Z* | R(z,y)}.

In the example, [z] is the set of all strings that have the same
length as x, including .

] = {¢}

0] = [1] ={0,1}

00] = [01] = [10] = [11] = {00,01,10,11}
etc.

An infinite number of equivalence classes in this case.

It follows from the definition that each element belongs to ex-
actly one equivalence class.

Let S be a set and R an equivalence relation on S.

Let P be the set of all equivalence classes for R.

Then P is a partition of S, i.e.

- Each equivalence class is non-empty

- P covers S, i.e. every x € S belongs to some equivalence class.
- If X and Y are equivalence classes s.t. X #Y, then XNY = 2.

In the example, R gives a partition with one equivalence class F;
for each i € N, such that P, = {|z| € &* | |z| = i}.

For instance Py = [¢] and P3 = [001].

Let & be the extension of § to strings, defined such that for all
states p € Q:

e 5(p,e)=p

e 5(p,za) = 6(8(p,x),a) for all x € =* and all a € =

Quotient Automata

Consider collapsing two states p and g to one state in a DFA.

1. We cannot collapse p and ¢ if p € F and g € F (we must be
distinguish between accept and reject).

2. If we collapse p and g and there is some a € 2 such that
(p,a) #= 6(q,a), then we must collapse also §(p,a) and 6(q,a) to
one state. Otherwise we have two choices on symbol a.

Combining 1 and 2 gives that we can collapse p and ¢q to one
state, unless there is some string = € ~* such that §(p,x) € F
and 6(q,x) € F.

Define the binary relation ~ on the set) of states such that

p ~ q holds if and only if for all z € =* (§(p,z) € F < §(q,x) € F).

Then = has the properties:

1. p~p for all p (reflexive)

2. if pagq, then g = p (symmetric)

3. if prqgand g~ r, then p =~ r (transitive)

That is, = is an equivalence relation on Q.

This defines an equivalence class [p] for every state p as

[p]l =1{q | ¢ = p}.

Recall that an equivalence relation defines a partition, so every
state belong to exactly one equivalence class, i.e.

p ~ q if and only if [p] = [q].

Let M = (Q,X,4,s,F) be a DFA.
Let =~ be defined on Q as above.

We can then construct an equivalent DFA M, that has one
state for each equivalence class of .

Define M, = (Q,=,4d,s', F"y where
e Q' ={[p] | pe @}

o §'([p],a) = [6(p,a)]

o s’ = [s]

o F'={[p] | pe F}

If we have just read O, then we must be in a or c.
If we have just read 1, then we must be in b or d.

Hence, for all x € >*:
5(a,z0) € F and §(c,z0) € F
6(a,z1) € F and §(¢c,zl) € F

It follows that §(a,y) € F < §(c,y) € F for all y € =*
SO a = c.
We similarily get that b =~ d.

We have [a] = [¢] and [b] = [d], sO M, has two states.

These two DFAs accept the same language.

Theorem: L(M) = L(M/%)

Proof: We claim that for all p € Q and all z € >*, it holds that
5(p,z) € F iff §([p],z) € F'.
Proof by induction over the length of x.

Base case: |x| =0, so x = €.

We have §(p,e) = p and §([p],e) = [p].
We have p € F iff [p] € F/ by def. of M.
Hence, &(p,e) € F iff §'([p],e) € F’

Induction step: Suppose the claim holds for all strings of length
n, for some n > 0. We must prove that it holds also for strings
of length n + 1.

Let a € > and z € ™. Then |az| =n+ 1.

Let ¢ = 6(p,a)

Then §'([p], a) = [6(p, a)] = [q]. i

It follows from the induction hypothesis that d(q,x) € F iff
8'([q),) € F.

Hence, §(p,ax) € F iff §'([p], azx) € F’.

This proves the claim, so it follows that for all x € >*, it holds
that §(s,z) € F iff §'([s],z) € F'.
That is, L(M) = L(M/%)

Minimization Algorithm

Recall these observations:

1. We cannot collapse p and ¢q if p € F and g € F (we must be
distinguish between accept and reject).

2. If we collapse p and ¢ and there is some a € > such that
d(p,a) # 6(q,a), then we must collapse also é(p,a) and §(q,a) to
one state. Otherwise we have two choices on symbol a.

Note that 2 implies the following:
if 6(p,a) and 6(q,a) cannot be collapsed, then we cannot collapse

p and q either.

The idea for the algorithm is to iteratively mark all pairs that
cannot be collapsed.

First mark all pairs p and ¢ that break rule 1.

Then work backwards from the marked pairs. If a pair p and g
IS unmarked but rule 2 requires that we also collapse a pair that
is already marked, then we mark also the pair p and ¢ since it
cannot be collapsed.

Make a table with one entry for each combination of two different
states. (Note, there is no order on the states in an entry).

Marking Algorithm:

1. For all pairs of states {p,q}
if pe F and q € F', then mark {p, q}

2. For all unmarked pairs of states {p,q}
if there is some a € X such that {§(p,a),d(q,a)} is marked
then mark {p, q}.

3. Repeat 2 until no new pair is marked.

If {p,q} is still unmarked, then p = gq.

Step 1 (iteration 0).
Mark all pairs {p,q} such that p€ F and q € F'.

Step 2, iteration 1:

Ol = O|Q
o
@)

{a, c} : {delta(a,0),0(c,0)} = {a,b} is marked, so mark {a,c}
{a,d} : {delta(a,0),d(d,0)} = {a,e} is marked, so mark {a, d}

{a, f} : {delta(a,0),6(f,0)} = {a, f} is unmarked, so check also 1
{a, f} : {delta(a,1),5(f,1)} = {b,e} is unmarked, so don't mark!

Step 2, iteration 1 cont'd:

Ol O|Q
o
o

{b,e} : {6(b,0),5(e,0)} = {b,e} is unmarked, so check also 1
{b,e} : {6(b,1),5(e,1)} = {c,d} is unmarked, so don't mark!
{c,d} : {delta(c,0),d(d,0)} = {b,e} is unmarked, so check also 1
{c,d} : {delta(c,1),0(d, 1)} = {f,a} is unmarked, so don't mark!
{c, f} : {delta(c,0),5(f,0)} = {b, f} is marked, so mark {c, f}

{d, f} : {delta(d,0),6(f,0)} = {e, f} is marked, so mark {d, f}

Step 2, iteration 2:

Ol = O
o
@)

{a, f} : {6(a,0),6(f,0)} = {a, f} is unmarked, so check also 1
{a, f} :{6(a,1),6(f,1)} = {b,e} is unmarked, so don’'t mark!
{b,e} : {6(b,0),6(e,0)} = {b,e} is unmarked, so check also 1
{b,e} : {6(b,1),6(e,1)} = {c,d} is unmarked, so don’t mark!
{c,d} : {delta(c,0),d(d,0)} = {b,e} is unmarked, so check also 1
{c,d} : {delta(c,1),d(d,1)} = {f,a} is unmarked, so don't mark!

Step 2, iteration 2:

Ol H=| O]
o
O

Nothing more was marked in iteration 2, so we terminate.
The pairs {a, f}, {b,e} and {c,d} are unmarked.

We geta~r f, b=e and c~d.

We get a minimal DFA

