TDDD14/TDDD85

Slides for Lecture 5
Minimization of Automata Christer Bäckström, 2018

Equivalence Relations

A binary relation R on a set S is an equivalence relation if it satisfies the following three properties:

- reflexive: $R(x, x)$ for all $x \in S$
- symmetric: $R(x, y) \Rightarrow R(y, x)$
- transitive: $R(x, y)$ and $R(y, z) \Rightarrow R(x, z)$

Example: Let $\Sigma=\{0,1\}$. Def. relation R on Σ^{*} such that $R(x, y)$ iff $|x|=|y|$.

- For all $x,|x|=|x|$. Reflexive
- If $|x|=|y|$, then $|y|=|x|$. Symmetric.
- If $|x|=|y|$ and $|y|=|z|$, then $|x|=|z|$. Transitive.

Each string $x \in \Sigma^{*}$ has an associated equivalence class [x], defined as $[x]=\left\{y \in \Sigma^{*} \mid R(x, y)\right\}$.

In the example, $[x]$ is the set of all strings that have the same length as x, including x.

$$
\begin{aligned}
& {[\varepsilon]=\{\varepsilon\}} \\
& {[0]=[1]=\{0,1\}} \\
& {[00]=[01]=[10]=[11]=\{00,01,10,11\}}
\end{aligned}
$$

etc.

An infinite number of equivalence classes in this case.

It follows from the definition that each element belongs to exactly one equivalence class.

Let S be a set and R an equivalence relation on S.
Let P be the set of all equivalence classes for R.
Then P is a partition of S, i.e.

- Each equivalence class is non-empty
- P covers S, i.e. every $x \in S$ belongs to some equivalence class.
- If X and Y are equivalence classes s.t. $X \neq Y$, then $X \cap Y=\varnothing$.

In the example, R gives a partition with one equivalence class P_{i} for each $i \in \mathbb{N}$, such that $P_{i}=\left\{|x| \in \Sigma^{*}| | x \mid=i\right\}$.

For instance $P_{0}=[\varepsilon]$ and $P_{3}=[001]$.

Let $\hat{\delta}$ be the extension of δ to strings, defined such that for all states $p \in Q$:

- $\widehat{\delta}(p, \varepsilon)=p$
- $\widehat{\delta}(p, x a)=\delta(\widehat{\delta}(p, x), a)$ for all $x \in \Sigma^{*}$ and all $a \in \Sigma$

Quotient Automata

Consider collapsing two states p and q to one state in a DFA.

1. We cannot collapse p and q if $p \in F$ and $q \notin F$ (we must be distinguish between accept and reject).
2. If we collapse p and q and there is some $a \in \Sigma$ such that $\delta(p, a) \neq \delta(q, a)$, then we must collapse also $\delta(p, a)$ and $\delta(q, a)$ to one state. Otherwise we have two choices on symbol a.

Combining 1 and 2 gives that we can collapse p and q to one state, unless there is some string $x \in \Sigma^{*}$ such that $\hat{\delta}(p, x) \in F$ and $\widehat{\delta}(q, x) \notin F$.

Define the binary relation \approx on the set Q of states such that
$p \approx q$ holds if and only if for all $x \in \Sigma^{*}(\widehat{\delta}(p, x) \in F \Leftrightarrow \widehat{\delta}(q, x) \in F)$.
Then \approx has the properties:

1. $p \approx p$ for all p (reflexive)
2. if $p \approx q$, then $q \approx p$ (symmetric)
3. if $p \approx q$ and $q \approx r$, then $p \approx r$ (transitive)

That is, \approx is an equivalence relation on Q.
This defines an equivalence class $[p]$ for every state p as $[p]=\{q \mid q \approx p\}$.

Recall that an equivalence relation defines a partition, so every state belong to exactly one equivalence class, i.e.
$p \approx q$ if and only if $[p]=[q]$.

Let $M=\langle Q, \Sigma, \delta, s, F\rangle$ be a DFA.
Let \approx be defined on Q as above.

We can then construct an equivalent DFA M / \approx that has one state for each equivalence class of \approx.

Define $M / \approx=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right\rangle$ where

- $Q^{\prime}=\{[p] \mid p \in Q\}$
- $\delta^{\prime}([p], a)=[\delta(p, a)]$
- $s^{\prime}=[s]$
- $F^{\prime}=\{[p] \mid p \in F\}$

If we have just read 0 , then we must be in a or c .
If we have just read 1 , then we must be in b or d.
Hence, for all $x \in \Sigma^{*}$:
$\widehat{\delta}(a, x 0) \notin F$ and $\hat{\delta}(c, x 0) \notin F$
$\widehat{\delta}(a, x 1) \in F$ and $\hat{\delta}(c, x 1) \in F$

It follows that $\widehat{\delta}(a, y) \in F \Leftrightarrow \widehat{\delta}(c, y) \in F$ for all $y \in \Sigma^{*}$
so $a \approx c$.
We similarily get that $b \approx d$.

We have $[a]=[c]$ and $[b]=[d]$, so M / \approx has two states.

These two DFAs accept the same language.

Theorem: $L(M)=L(M / \approx)$
Proof: We claim that for all $p \in Q$ and all $x \in \Sigma^{*}$, it holds that $\widehat{\delta}(p, x) \in F$ iff $\hat{\delta}^{\prime}([p], x) \in F^{\prime}$.
Proof by induction over the length of x.

Base case: $|x|=0$, so $x=\varepsilon$.
We have $\widehat{\delta}(p, \varepsilon)=p$ and $\hat{\delta}^{\prime}([p], \varepsilon)=[p]$.
We have $p \in F$ iff $[p] \in F^{\prime}$ by def. of M / \approx.
Hence, $\widehat{\delta}(p, \varepsilon) \in F$ iff $\hat{\delta}^{\prime}([p], \varepsilon) \in F^{\prime}$

Induction step: Suppose the claim holds for all strings of length n, for some $n \geq 0$. We must prove that it holds also for strings of length $n+1$.
Let $a \in \Sigma$ and $x \in \Sigma^{n}$. Then $|a x|=n+1$.
Let $q=\delta(p, a)$
Then $\delta^{\prime}([p], a)=[\delta(p, a)]=[q]$.
It follows from the induction hypothesis that $\widehat{\delta}(q, x) \in F$ iff $\widehat{\delta}^{\prime}([q], x) \in F^{\prime}$. Hence, $\widehat{\delta}(p, a x) \in F \operatorname{iff} \widehat{\delta}^{\prime}([p], a x) \in F^{\prime}$.

This proves the claim, so it follows that for all $x \in \Sigma^{*}$, it holds that $\widehat{\delta}(s, x) \in F$ iff $\widehat{\delta}^{\prime}([s], x) \in F^{\prime}$.
That is, $L(M)=L(M / \approx)$

Minimization Algorithm

Recall these observations:

1. We cannot collapse p and q if $p \in F$ and $q \notin F$ (we must be distinguish between accept and reject).
2. If we collapse p and q and there is some $a \in \Sigma$ such that $\delta(p, a) \neq \delta(q, a)$, then we must collapse also $\delta(p, a)$ and $\delta(q, a)$ to one state. Otherwise we have two choices on symbol a.

Note that 2 implies the following:
if $\delta(p, a)$ and $\delta(q, a)$ cannot be collapsed, then we cannot collapse p and q either.

The idea for the algorithm is to iteratively mark all pairs that cannot be collapsed.

First mark all pairs p and q that break rule 1 .

Then work backwards from the marked pairs. If a pair p and q is unmarked but rule 2 requires that we also collapse a pair that is already marked, then we mark also the pair p and q since it cannot be collapsed.

Make a table with one entry for each combination of two different states. (Note, there is no order on the states in an entry).

Marking Algorithm:

1. For all pairs of states $\{p, q\}$ if $p \in F$ and $q \notin F$, then mark $\{p, q\}$
2. For all unmarked pairs of states $\{p, q\}$ if there is some $a \in \Sigma$ such that $\{\delta(p, a), \delta(q, a)\}$ is marked then mark $\{p, q\}$.
3. Repeat 2 until no new pair is marked.

If $\{p, q\}$ is still unmarked, then $p \approx q$.

Step 1 (iteration 0).
Mark all pairs $\{p, q\}$ such that $p \in F$ and $q \notin F$.

Step 2, iteration 1:

$\{a, c\}:\{\operatorname{delta}(a, 0), \delta(c, 0)\}=\{a, b\}$ is marked, so mark $\{a, c\}$ $\{a, d\}:\{\operatorname{delta}(a, 0), \delta(d, 0)\}=\{a, e\}$ is marked, so mark $\{a, d\}$ $\{a, f\}:\{\operatorname{delta}(a, 0), \delta(f, 0)\}=\{a, f\}$ is unmarked, so check also 1 $\{a, f\}:\{\operatorname{delta}(a, 1), \delta(f, 1)\}=\{b, e\}$ is unmarked, so don't mark!

Step 2, iteration 1 cont'd:

$\{b, e\}:\{\delta(b, 0), \delta(e, 0)\}=\{b, e\}$ is unmarked, so check also 1 $\{b, e\}:\{\delta(b, 1), \delta(e, 1)\}=\{c, d\}$ is unmarked, so don't mark! $\{c, d\}:\{\operatorname{delta}(c, 0), \delta(d, 0)\}=\{b, e\}$ is unmarked, so check also 1 $\{c, d\}:\{\operatorname{delta}(c, 1), \delta(d, 1)\}=\{f, a\}$ is unmarked, so don't mark! $\{c, f\}:\{\operatorname{delta}(c, 0), \delta(f, 0)\}=\{b, f\}$ is marked, so mark $\{c, f\}$ $\{d, f\}:\{\operatorname{delta}(d, 0), \delta(f, 0)\}=\{e, f\}$ is marked, so mark $\{d, f\}$

Step 2, iteration 2:

0
$\{a, f\}:\{\delta(a, 0), \delta(f, 0)\}=\{a, f\}$ is unmarked, so check also 1 $\{a, f\}:\{\delta(a, 1), \delta(f, 1)\}=\{b, e\}$ is unmarked, so don't mark! $\{b, e\}:\{\delta(b, 0), \delta(e, 0)\}=\{b, e\}$ is unmarked, so check also 1 $\{b, e\}:\{\delta(b, 1), \delta(e, 1)\}=\{c, d\}$ is unmarked, so don't mark! $\{c, d\}:\{\operatorname{delta}(c, 0), \delta(d, 0)\}=\{b, e\}$ is unmarked, so check also 1 $\{c, d\}:\{\operatorname{delta}(c, 1), \delta(d, 1)\}=\{f, a\}$ is unmarked, so don't mark!

Step 2, iteration 2:

Nothing more was marked in iteration 2, so we terminate. The pairs $\{a, f\},\{b, e\}$ and $\{c, d\}$ are unmarked.

We get $a \approx f, b \approx e$ and $c \approx d$.

We get a minimal DFA

