TDDD14/TDDD85 Slides for Lecture 5 Minimization of Automata Christer Bäckström, 2018

Equivalence Relations

A binary relation R on a set S is an equivalence relation if it satisfies the following three properties:

- reflexive: R(x, x) for all $x \in S$
- symmetric: $R(x,y) \Rightarrow R(y,x)$
- transitive: R(x,y) and $R(y,z) \Rightarrow R(x,z)$

Example: Let $\Sigma = \{0, 1\}$. Def. relation R on Σ^* such that R(x, y) iff |x| = |y|.

- For all x, |x| = |x|. Reflexive - If |x| = |y|, then |y| = |x|. Symmetric. - If |x| = |y| and |y| = |z|, then |x| = |z|. Transitive. Each string $x \in \Sigma^*$ has an associated equivalence class [x], defined as $[x] = \{y \in \Sigma^* \mid R(x, y)\}.$

In the example, [x] is the set of all strings that have the same length as x, including x.

```
\begin{split} [\varepsilon] &= \{\varepsilon\} \\ [0] &= [1] = \{0, 1\} \\ [00] &= [01] = [10] = [11] = \{00, 01, 10, 11\} \\ \text{etc.} \end{split}
```

An infinite number of equivalence classes in this case.

It follows from the definition that each element belongs to exactly one equivalence class.

Let S be a set and R an equivalence relation on S. Let P be the set of all equivalence classes for R. Then P is a partition of S, i.e.

- Each equivalence class is non-empty
- P covers S, i.e. every $x \in S$ belongs to some equivalence class.
- If X and Y are equivalence classes s.t. $X \neq Y$, then $X \cap Y = \emptyset$.

In the example, R gives a partition with one equivalence class P_i for each $i \in \mathbb{N}$, such that $P_i = \{|x| \in \Sigma^* \mid |x| = i\}$.

For instance $P_0 = [\varepsilon]$ and $P_3 = [001]$.

Let $\hat{\delta}$ be the extension of δ to strings, defined such that for all states $p \in Q$:

- $\hat{\delta}(p,\varepsilon) = p$
- $\hat{\delta}(p, xa) = \delta(\hat{\delta}(p, x), a)$ for all $x \in \Sigma^*$ and all $a \in \Sigma$

Quotient Automata

Consider collapsing two states p and q to one state in a DFA.

1. We cannot collapse p and q if $p \in F$ and $q \notin F$ (we must be distinguish between accept and reject).

2. If we collapse p and q and there is some $a \in \Sigma$ such that $\delta(p, a) \neq \delta(q, a)$, then we must collapse also $\delta(p, a)$ and $\delta(q, a)$ to one state. Otherwise we have two choices on symbol a.

Combining 1 and 2 gives that we can collapse p and q to one state, unless there is some string $x \in \Sigma^*$ such that $\hat{\delta}(p,x) \in F$ and $\hat{\delta}(q,x) \notin F$.

Define the binary relation \approx on the set Q of states such that

 $p \approx q$ holds if and only if for all $x \in \Sigma^*$ ($\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F$).

Then \approx has the properties: 1. $p \approx p$ for all p (reflexive) 2. if $p \approx q$, then $q \approx p$ (symmetric) 3. if $p \approx q$ and $q \approx r$, then $p \approx r$ (transitive)

That is, \approx is an equivalence relation on Q.

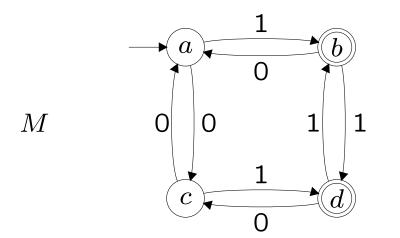
This defines an equivalence class [p] for every state p as $[p] = \{q \mid q \approx p\}.$

Recall that an equivalence relation defines a partition, so every state belong to exactly one equivalence class, i.e. $p \approx q$ if and only if [p] = [q].

Let $M = \langle Q, \Sigma, \delta, s, F \rangle$ be a DFA. Let \approx be defined on Q as above.

We can then construct an equivalent DFA M_{\approx} that has one state for each equivalence class of \approx .

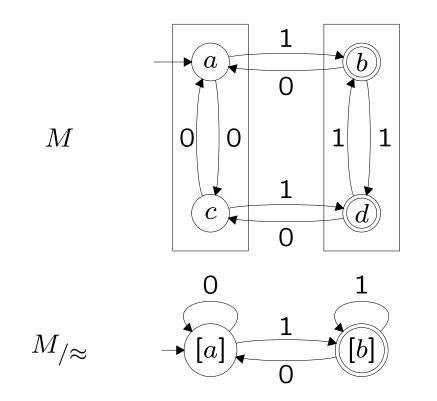
Define
$$M_{\approx} = \langle Q', \Sigma, \delta', s', F' \rangle$$
 where
• $Q' = \{[p] \mid p \in Q\}$
• $\delta'([p], a) = [\delta(p, a)]$
• $s' = [s]$
• $F' = \{[p] \mid p \in F\}$



If we have just read 0, then we must be in a or c. If we have just read 1, then we must be in b or d.

Hence, for all $x \in \Sigma^*$: $\hat{\delta}(a, x0) \notin F$ and $\hat{\delta}(c, x0) \notin F$ $\hat{\delta}(a, x1) \in F$ and $\hat{\delta}(c, x1) \in F$

It follows that $\hat{\delta}(a, y) \in F \Leftrightarrow \hat{\delta}(c, y) \in F$ for all $y \in \Sigma^*$ so $a \approx c$. We similarly get that $b \approx d$. We have [a] = [c] and [b] = [d], so $M_{/\approx}$ has two states.



These two DFAs accept the same language.

Theorem: $L(M) = L(M_{\approx})$

Proof: We claim that for all $p \in Q$ and all $x \in \Sigma^*$, it holds that $\hat{\delta}(p, x) \in F$ iff $\hat{\delta}'([p], x) \in F'$. Proof by induction over the length of x.

Base case: |x| = 0, so $x = \varepsilon$. We have $\hat{\delta}(p,\varepsilon) = p$ and $\hat{\delta}'([p],\varepsilon) = [p]$. We have $p \in F$ iff $[p] \in F'$ by def. of $M_{/\approx}$. Hence, $\hat{\delta}(p,\varepsilon) \in F$ iff $\hat{\delta}'([p],\varepsilon) \in F'$ Induction step: Suppose the claim holds for all strings of length n, for some $n \ge 0$. We must prove that it holds also for strings of length n + 1.

Let $a \in \Sigma$ and $x \in \Sigma^n$. Then |ax| = n + 1. Let $q = \delta(p, a)$ Then $\delta'([p], a) = [\delta(p, a)] = [q]$. It follows from the induction hypothesis that $\hat{\delta}(q, x) \in F$ iff $\hat{\delta}'([q], x) \in F'$. Hence, $\hat{\delta}(p, ax) \in F$ iff $\hat{\delta}'([p], ax) \in F'$.

This proves the claim, so it follows that for all $x \in \Sigma^*$, it holds that $\hat{\delta}(s,x) \in F$ iff $\hat{\delta}'([s],x) \in F'$. That is, $L(M) = L(M_{/\approx})$

Minimization Algorithm

Recall these observations:

1. We cannot collapse p and q if $p \in F$ and $q \notin F$ (we must be distinguish between accept and reject).

2. If we collapse p and q and there is some $a \in \Sigma$ such that $\delta(p, a) \neq \delta(q, a)$, then we must collapse also $\delta(p, a)$ and $\delta(q, a)$ to one state. Otherwise we have two choices on symbol a.

Note that 2 implies the following:

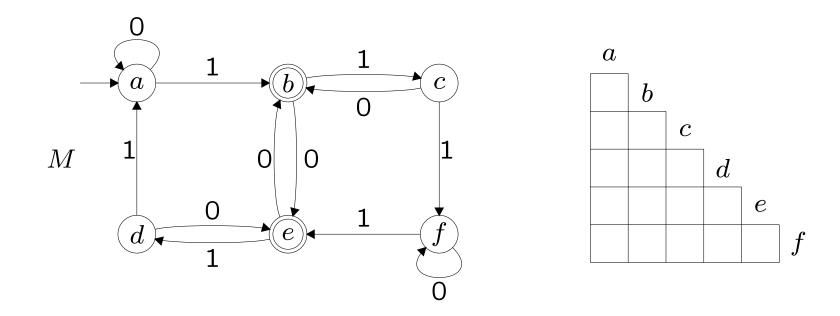
if $\delta(p, a)$ and $\delta(q, a)$ cannot be collapsed, then we cannot collapse p and q either.

The idea for the algorithm is to iteratively mark all pairs that cannot be collapsed.

First mark all pairs p and q that break rule 1.

Then work backwards from the marked pairs. If a pair p and q is unmarked but rule 2 requires that we also collapse a pair that is already marked, then we mark also the pair p and q since it cannot be collapsed.

Make a table with one entry for each combination of two different states. (Note, there is no order on the states in an entry).

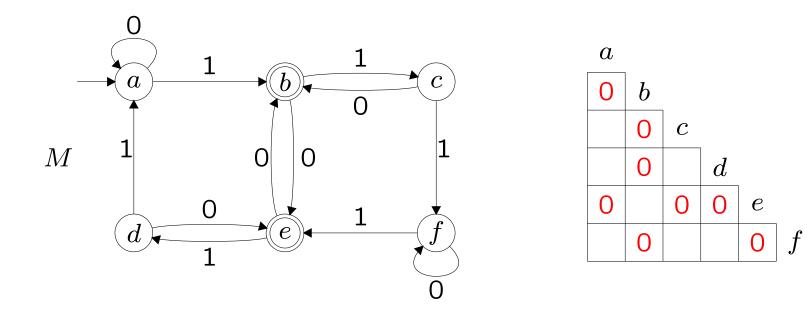


Marking Algorithm:

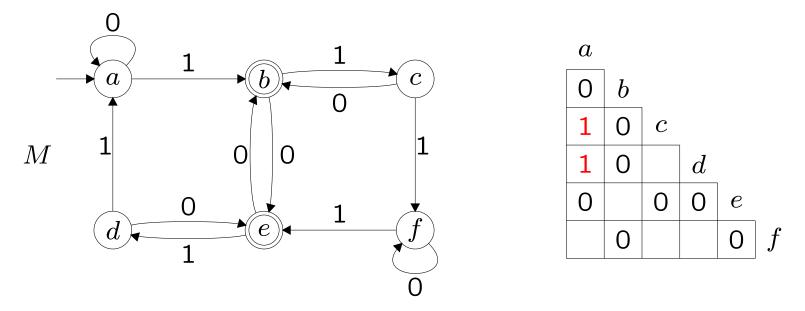
- For all pairs of states {p,q} if p ∈ F and q ∉ F, then mark {p,q}
 For all unmarked pairs of states {p,q} if there is some a ∈ Σ such that {δ(p,a), δ(q,a)} is marked then mark {p,q}.
- 3. Repeat 2 until no new pair is marked.

If $\{p,q\}$ is still unmarked, then $p \approx q$.

Step 1 (iteration 0). Mark all pairs $\{p,q\}$ such that $p \in F$ and $q \notin F$.

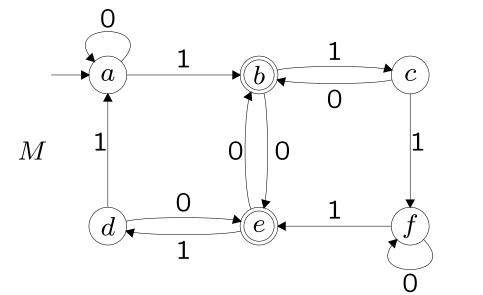


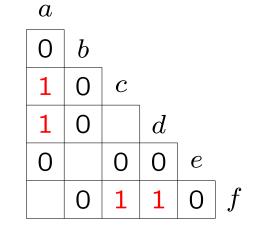
Step 2, iteration 1:



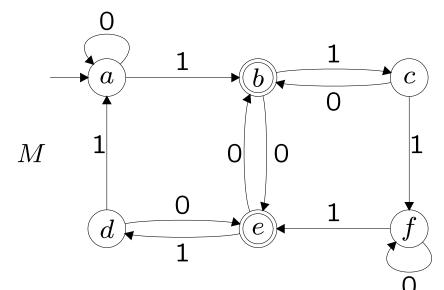
 $\{a, c\} : \{delta(a, 0), \delta(c, 0)\} = \{a, b\} \text{ is marked, so mark } \{a, c\} \\ \{a, d\} : \{delta(a, 0), \delta(d, 0)\} = \{a, e\} \text{ is marked, so mark } \{a, d\} \\ \{a, f\} : \{delta(a, 0), \delta(f, 0)\} = \{a, f\} \text{ is unmarked, so check also } 1 \\ \{a, f\} : \{delta(a, 1), \delta(f, 1)\} = \{b, e\} \text{ is unmarked, so don't mark!}$

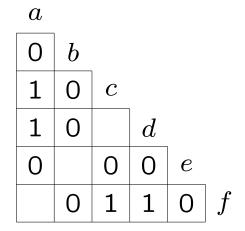
Step 2, iteration 1 cont'd:



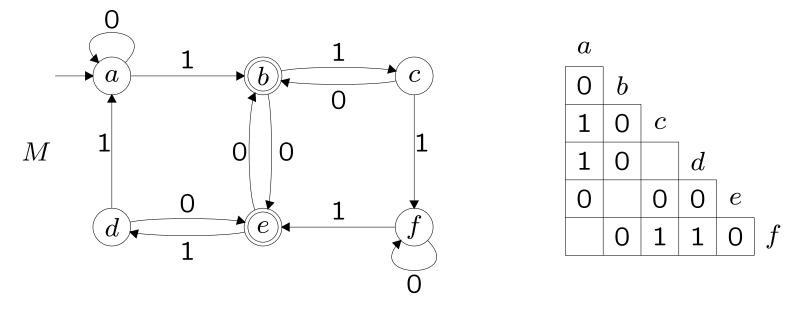


 $\{b, e\} : \{\delta(b, 0), \delta(e, 0)\} = \{b, e\} \text{ is unmarked, so check also } 1 \\ \{b, e\} : \{\delta(b, 1), \delta(e, 1)\} = \{c, d\} \text{ is unmarked, so don't mark!} \\ \{c, d\} : \{delta(c, 0), \delta(d, 0)\} = \{b, e\} \text{ is unmarked, so check also } 1 \\ \{c, d\} : \{delta(c, 1), \delta(d, 1)\} = \{f, a\} \text{ is unmarked, so don't mark!} \\ \{c, f\} : \{delta(c, 0), \delta(f, 0)\} = \{b, f\} \text{ is marked, so mark } \{c, f\} \\ \{d, f\} : \{delta(d, 0), \delta(f, 0)\} = \{e, f\} \text{ is marked, so mark } \{d, f\} \\ \}$





 $\{a, f\} : \{\delta(a, 0), \delta(f, 0)\} = \{a, f\} \text{ is unmarked, so check also } 1 \\ \{a, f\} : \{\delta(a, 1), \delta(f, 1)\} = \{b, e\} \text{ is unmarked, so don't mark!} \\ \{b, e\} : \{\delta(b, 0), \delta(e, 0)\} = \{b, e\} \text{ is unmarked, so check also } 1 \\ \{b, e\} : \{\delta(b, 1), \delta(e, 1)\} = \{c, d\} \text{ is unmarked, so don't mark!} \\ \{c, d\} : \{delta(c, 0), \delta(d, 0)\} = \{b, e\} \text{ is unmarked, so check also } 1 \\ \{c, d\} : \{delta(c, 1), \delta(d, 1)\} = \{f, a\} \text{ is unmarked, so don't mark!}$



Nothing more was marked in iteration 2, so we terminate. The pairs $\{a, f\}$, $\{b, e\}$ and $\{c, d\}$ are unmarked.

We get $a \approx f$, $b \approx e$ and $c \approx d$.

