
Formal Languages and
Automata Theory

TDDD14/TDDD85

2019

Today

• Some administrative info

• Overview of the course

• Some theory: Strings and languages

Administrative Info

TDDD14 vs. TDDD85

TDDD14 and TDDD85 are the same course in practice.

Only difference:
(Same exam), but a few more points required to pass for TDDD14.

Teachers

Christer Bäckström: Examiner, lecturer, teaching assistent

Jonas Wallgren: Course assistant, lecturer, teaching assistant

Organization

• 16 Lectures
Christer and Jonas will alternate.

• 9 Tutorials (Problem solving sessions)
Jonas and Christer

Examination

• Two sets of homework

• One written exam

You must pass both these!

Literature

• Course book:
Michael Sipser Introduction to the Theory of Computation

• (The previous book, Dexter Kozen Automata and Computabil-
ity, can be used if you already have it.)

• A compendium for the tutorials
Download from web page

• Various other material at the web page
Note! This material may change during the course.

Questions?

Overview of Course

What Can We Compute?

What Can We Compute?

With very limited memory?

What Can We Compute?

With unlimited memory?

(That is, unlimited in the theoretical model, meaning
sufficient memory in practice.)

We will study three models of computation

Finitite Automata (FA)

Control unit

Read-only input tape

4 7 1 1 ...

We can read the input sequentially. The control unit has a finite
number of states, which is the only memory.

Pushdown Automata (PDA)

Control unit

Read-only input tape

4 7 1 1 ...

Stack4
7
1

The PDA is an FA that has unlimited memory with restricted
access in the form of a stack.

Turing Machine (TM)

Control unit

Read-write tape

4 7 1 1 ...

The TM uses the (infinite) tape as a read-write memory with
unrestricted access.

Decision Problems

We usually want to compute something.

Minput output

The output is a function of the input.

M
Road map

Two cities: A, B
Shortest route
between A and B

MC++ code
Executable program
or error messages

In theory we often focus on decision problems, which have a
yes/no answer.

Minput yes/no

• Simpler to analyse

• Most of the interesting properties remain

M
Road map

Two cities: A, B
Distance d

Is there a route
between A and B
of length ≤ d

MC++ code
Is the input a
syntactically correct
C++ program?

Formal Languages

Let M be a deciding machine.

Minput yes/no

The language L(M) of M is the set of all inputs where M
answers yes.

MC++ code
Is the input a
syntactically correct
C++ program?

L(M) is the set of all syntactically correct C++ programs.

Correspondance Between Machines and Languages

Machines with various limitations correspond to different formal
languages.

TM ⇔ semi-decidable languages
↑ ↑

PDA ⇔ Context free languages
↑ ↑
FA ⇔ Regular languages

Natural languges like english and swedish are not formal lan-
guages.

Why study limited machines/languages?

• Have nice properties

• Simpler to analyse and use

Finite automata/regular languages

Regular languages are very restricted, but also very fast to use.
Very useful for

• search expressions

• filters in web browsers

• and much more...

Pushdown automata/context-free languages

Most programming languages today are CFL.

• Fast and easy to check the syntax

• Much more powerful than regular languages

• Avoids many types of errors

The earliest programming languages in the 1950’s had no formal
principles for the syntax (Fortran and Cobol).

The Fortran bug that (almost) crashed a satellite:

Intended code:
DO I = 1,100 Loop I from 1 to 100

Actual code:
DO I = 1.100

Blanks are not significant in Fortran and variables are implicitly
declared, so no errror.

Interpreted as:
DOI = 1.100 Assign value 1.100 to variable DOI

The unlimited case

The Turing Machine (TM) is the theoretical model of computa-
tion.

Everything that is computable can be computed on a Turing
machine and vice versa.

That is, the Turing machine is a theoretical model of both cur-
rent and future computers.

Can we compute everything that can be formalized?

The Halting Problem:

Write a computer program as follows:
Input:

An arbitrary computer program P (e.g. in C++)
Output:

Yes, if P terminates on all inputs
No, if P goes into an infinite loop on some input(s).

Such a program cannot exist. There will always be input pro-
grams P where it is not possible to give a yes/no answer.

That is, there are things that cannot be computed!

Some Basic Theory and Notation

Basic Notions: Strings and Languages

• An alphabet is a finite set of symbols (denoted Σ,Γ)

• A string over Σ is a finite sequence of symbols from Σ

Example:
1010 is a string over Σ1 = {0,1}
theory is a string over Σ2 = {a, b, c, . . . , z}

• The length of a string w (denoted |w|) is the number of
symbols it contains.
|1010| = 4, |theory| = 6

• The empty string (denoted ε) is the string of length 0

• The concatenation of strings x and y is written xy.
x = red and y = fox gives xy = redfox.

• xk denotes the concatenation of x with itself k times.
0150 = 0111110,
x2y = redredfox.

• A language is a set of strings over an alphabet

• Σ∗ is the language consisting of all strings over Σ

Let Σ = {a, b}.
Then Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, . . . }

Note that a language is an ordinary set, so we have the usual
set operations:

• Union and intersection:
A ∪B = {x | x ∈ A or x ∈ B},
A ∩B = {x | x ∈ A and x ∈ B}

• Complement: A = {x ∈ Σ∗ | x /∈ A}
(Note: Kozen uses Ã for complement.)

• Concatenation: AB = {xy | x ∈ A and y ∈ B}

• Ak denotes the concatenation of A with itself k times
(note: A0 = {ε})

• Star: A∗ = A0 ∪A1 ∪A2 ∪ . . .

Examples of Languages:

• the set of odd binary numbers

• the set of prime numbers

• the set of syntactically correct Java programs

• the set of positive integer solutions to xn+ yn = zn for n > 2

• the set of true mathematical statements

