TDDD14/TDDD85

 Slides for Lecture 6Homomorphisms
Christer Bäckström, 2017

Let Σ and Γ be two alphabets.

A function $h: \Sigma^{*} \rightarrow \Gamma^{*}$ is a homomorphisms if

1. $h(x y)=h(x) h(y)$ for all $x, y \in \Sigma^{*}$
2. $h(\varepsilon)=\varepsilon$.

Example: Let $\Sigma=\Gamma=\{a, b, c\}$ and define h as $h(a)=b a b, h(b)=c b c$ and $h(c)=a$.

Then $h(a b c)=h(a) h(b) h(c)=b a b c b c a$.

Homomorphisms are extended to sets in the usual way, i.e. if $A \subseteq \Sigma^{*}$, then $h(A)=\{h(x) \mid x \in A\}$.
$h(A)$ is the image of A under h.

If A is regular, then $h(A)$ is regular.

Intuition for why $h(A)$ is regular if A is regular.

Let $\Sigma=\{0,1,2,3\}$ and let $\Gamma=\{0,1\}$.
Define h as a binary encoding of Σ, i.e.
$h(0)=00, h(1)=01, h(2)=10$ and $h(3)=11$.
If $A \subseteq \Sigma^{*}$ is regular, then there is some DFA M for A.

Start with a DFA M for A. Construct a DFA for $h(A)$ as follows:

Given a transition with label 2 in M. Use that $h(2)=10$

Add a new state and replace with two transitions in N.

This is still a DFA.

We also define the backwards direction:
if $B \subseteq \Gamma^{*}$, then $h^{-1}(B)=\left\{x \in \Sigma^{*} \mid h(x) \in B\right\}$.
$h^{-1}(B)$ is the preimage of B under h.

If B is regular, then $h^{-1}(B)$ is regular.

