TDDD14/TDDD85
 Slides for Lecture 2, 2017

Slides originally for TDDD65 by Gustav Nordh

Minor differences to Kozen:

- Kozen draws states as black dots, not circles.
- Kozen calls the start state s, not q_{0}.
- Kozen uses the recursive function $\hat{\delta}$ to define when a DFA accepts a string. Both definitions give the same result.

Finite Automata

What can be computed with finite memory?

Finite Automata

What can be computed with finite memory?

Finite Automata

What can be computed with finite memory?

A "Wild" Finite Automaton

- The input is the numbers pressed by the user
- The correct code is 1234
- Actually the door is opened if $\{0, \ldots, 9\}^{*} 1234\{0, \ldots, 9\}^{*}$ is entered
- The machine needs to remember if the input given so far contains the subsequence 1234

Finite Automata: Informal Definition

The machine M :

- States: q_{1} and q_{2}
- Start state: q_{1} (arrow from nowhere)
- Accept state: q_{2} (double circle)
- State transitions: arrows

Finite Automata: Informal Definition

The machine M :
On input string $s=s_{1} s_{2} \cdots s_{n}, M$ operates as follows:

- Begins in start state q_{1} and reads the string s from left to right
- When reading symbol s_{i} it follows the transition labeled s_{i} from the current state
- After reading s_{n}, the last symbol in the string, it
- accepts s if it is in an accept state
- rejects s if it is not in an accept state

Finite Automata: Informal Definition

The machine M :
On input:
011

Finite Automata: Informal Definition

The machine M :
On input:
011 ACCEPT

Finite Automata: Informal Definition

The machine M :
On input:
011 ACCEPT
10

Finite Automata: Informal Definition

The machine M :
On input:
011 ACCEPT
10 REJECT

Finite Automata: Informal Definition

The machine M :
On input:
011 ACCEPT
10 REJECT
110

Finite Automata: Informal Definition

The machine M :
On input:
011 ACCEPT
10 REJECT
110 REJECT

A "Wild" Finite Automaton

- The input is the numbers pressed by the user
- The correct code is 1234
- Actually the door is opened if $\{0, \ldots, 9\}^{*} 1234\{0, \ldots, 9\}^{*}$ is entered
- The machine needs to remember if the input given so far contains the subsequence 1234

A "Wild" Finite Automaton

- The input is the numbers pressed by the user
- The correct code is 1234
- Actually the door is opened if $\{0, \ldots, 9\}^{*} 1234\{0, \ldots, 9\}^{*}$ is entered
- The machine needs to remember if the input given so far contains the subsequence 1234

Representation of finite automata

- State diagram

- Transition table

$$
\begin{array}{c|cc}
& 0 & 1 \\
\hline \rightarrow q_{1} & q_{1} & q_{2} \\
F q_{2} & q_{1} & q_{2}
\end{array}
$$

Definition of DFAs

Definition

A deterministic finite automaton (DFA) is a 5 -tuple ($Q, \Sigma, \delta, q_{0}, F$) where

- Q is a finite set called the states
- Σ is a finite set called the alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

The language recognized by a DFA

Definition

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and $s=s_{1} s_{2} \cdots s_{n}$ a string over Σ. M accepts s if there is a sequence of states $r_{0}, r_{1}, \ldots r_{n}$ from Q such that

- $r_{0}=q_{0}$,
- $\delta\left(r_{i}, s_{i+1}\right)=r_{i+1}(i=0, \ldots, n-1)$, and
- $r_{n} \in F$

The language recognized by a DFA

Definition

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and $s=s_{1} s_{2} \cdots s_{n}$ a string over Σ. M accepts s if there is a sequence of states $r_{0}, r_{1}, \ldots r_{n}$ from Q such that

- $r_{0}=q_{0}$,
- $\delta\left(r_{i}, s_{i+1}\right)=r_{i+1}(i=0, \ldots, n-1)$, and
- $r_{n} \in F$

Definition

- M recognizes language L if $L=\{s \mid M$ accepts $s\}$
- $L(M)$ denotes the language recognized by M

Regular Languages

Definition
 A language is a regular language if some DFA recognizes it

