TDDD14/TDDD85 Slides for Lecture 2, 2017

Slides originally for TDDD65 by Gustav Nordh

Minor differences to Kozen:

- Kozen draws states as black dots, not circles.
- Kozen calls the start state s, not q_0 .
- Kozen uses the recursive function $\hat{\delta}$ to define when a DFA accepts a string. Both definitions give the same result.

What can be computed with finite memory?

What can be computed with finite memory?

What can be computed with finite memory?

A "Wild" Finite Automaton

- The input is the numbers pressed by the user
- The correct code is 1234
- Actually the door is opened if $\{0, \ldots, 9\}^*$ 1234 $\{0, \ldots, 9\}^*$ is entered
- The machine needs to remember if the input given so far contains the subsequence 1234

The machine *M*:

- States: q_1 and q_2
- Start state: q_1 (arrow from nowhere)
- Accept state: q_2 (double circle)
- State transitions: arrows

The machine *M*:

On input string $s = s_1 s_2 \cdots s_n$, *M* operates as follows:

- Begins in start state q₁ and reads the string s from left to right
- When reading symbol s_i it follows the transition labeled s_i from the current state
- After reading s_n , the last symbol in the string, it
 - accepts s if it is in an accept state
 - rejects s if it is not in an accept state

The machine *M*: On input: 011

The machine *M*: On input: 011 ACCEPT

The machine *M*: On input: 011 ACCEPT 10

The machine *M*: On input: 011 ACCEPT 10 REJECT

The machine *M*: On input: 011 ACCEPT 10 REJECT 110

The machine *M*: On input: 011 ACCEPT 10 REJECT 110 REJECT

A "Wild" Finite Automaton

- The input is the numbers pressed by the user
- The correct code is 1234
- Actually the door is opened if $\{0, \ldots, 9\}^*$ is entered
- The machine needs to remember if the input given so far contains the subsequence 1234

A "Wild" Finite Automaton

- The input is the numbers pressed by the user
- The correct code is 1234
- Actually the door is opened if $\{0, \ldots, 9\}^*$ 1234 $\{0, \ldots, 9\}^*$ is entered
- The machine needs to remember if the input given so far contains the subsequence 1234

Representation of finite automata

• State diagram

Transition table

	0	1
$ ightarrow q_1$	q_1	q ₂
$F q_2$	q_1	q_2

Definition

A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set called the states
- Σ is a finite set called the alphabet
- $\delta : \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

The language recognized by a DFA

Definition

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and $s = s_1 s_2 \cdots s_n$ a string over Σ . *M* accepts *s* if there is a sequence of states r_0, r_1, \ldots, r_n from *Q* such that

•
$$r_0 = q_0$$
,
• $\delta(r_i, s_{i+1}) = r_{i+1}$ ($i = 0, ..., n-1$), and
• $r_n \in F$

The language recognized by a DFA

Definition

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and $s = s_1 s_2 \cdots s_n$ a string over Σ . *M* accepts *s* if there is a sequence of states r_0, r_1, \ldots, r_n from *Q* such that

•
$$r_0 = q_0$$
,
• $\delta(r_i, s_{i+1}) = r_{i+1}$ ($i = 0, ..., n-1$), and
• $r_n \in F$

Definition

- *M* recognizes language *L* if $L = \{s \mid M \text{ accepts } s\}$
- L(M) denotes the language recognized by M

Definition A language is a regular language if some DFA recognizes it