
1

How can several users access and
update the information at the

same time?

Real world
results Model

Database
system

Physical
database

Database
management
system

Processing of
Queries/updates

Access to stored data

2

Transactions

• A transaction is a logical unit of database
processing and consists of one or several
operations.

• Database operations in a simplified model:
– read-item(X)

– write-item(X)

3

Properties for transactions

ACID: Atomicity, Consistency preservation,
Isolation, Durability

• A: A transaction is an atomic unit: it is either
executed completely or not at all

• C: A database that is in a consistent state before
the execution of a transaction (i.e. it fulfills the
conditions in the schema and other conditions
declared for the database), is also in a consistent
state after the execution.

4

Properties for transactions

ACID: Atomicity, Consistency
preservation, Isolation, Durability

• I: A transaction should act as if it is
executed isolated from other transactions.

• D: Changes in the database made by a
committed transaction are permanent.

5

Properties for transactions

How are the ACID properties achieved?

• A: recovery system

• C: programmer + DBMS

• I: concurrency contol

• D: recovery system

6

start-transaction T1
write-item T1, D, 10, 20
commit T1
start-transaction T4
write-item T4, B, 10, 20
write-item T4, A, 5, 10
commit T4
start-transaction T2
write-item T2, B, 20, 15
start-transaction T3
write-item T3, A, 10, 30
write-item T2, D, 20, 25
CRASH

T1

T4

T2

T3

crash

7

Recovery
(Atomicity and durability)

8

Reasons for crash

1. system crash

2. transaction or system error

3. local error or exception has been discovered
by a transaction

4. concurrency control

5. disk failure

6. catastrophy

9

Cause 5-6

backup of database

backup of system log

redo operations för committed transactions

10

System log
• file with log records

• Saved on disk + periodically on tape

• Types av log records:
– start-transaction T

– write-item T, X, oldvalue, newvalue

– read-item T,X

– commit T

– abort T

– checkpoint

11

Cause 1-4

12

Database
physical blocks

Cache directory

Cache
(collection of buffers)

Primary memory

13

Read/Write X

• Check whether the block with element X is
in primary memory (buffer)

• If not, get the block with element X.

It is possible that some buffers in the cache
need to be replaced.

It is possible that some buffers need to be
written to the disk first. (flush the cache
buffers)

14

Read/Write X

• How do we know that a buffer has been
changed? ``dirty bit''

• How do we know that a buffer can be
written to the disk? ``pin-unpin bit''

• Where is the buffer written on the disk?

``in-place updating'' - ``shadowing''

15

Checkpoint

• The system writes all buffers that have been
changed (dirty bit) and can be written (pin-
unpin bit) to the disk

• Advantage: operations belonging to
transactions that have committed before a
checkpoint do not need to be redone

• How often?: according to time – number of
committed transactions

16

Checkpoint

• How?

1. Temporarily stop all transactions

2. Write all buffers that were changed and
can be written to the disk

3. Write``checkpoint'' in the log and write
the log to disk

4. Restart execution of the transactions

17

Fuzzy Checkpointing

• As checkpointing takes time, the execution
of transactions is delayed. To reduce the
delay we can use fuzzy checkpointing.

• Write checkpoint in the log, but keep the
previous checkpoint until the writing to the
disk is finished.

18

Update methods

• Deferred update
- The database is updated physically after the

transaction has committed.
- before commit the transaction has a local

environment
- after commit the log and buffers are written

to the disk (note: this does not mean that is
is written immediately after commit)

19

Update methods

• Immediate update

- The database can be updated physically
before commit (the log is written first, then
the database)

20

Recovery with deferred update

• As the database is physically changed after
commit, we never need to take away results
from non-committed transactions.

• We need to redo the operations of
committed transactions for which the results
have not been written to the disk.

• NO-UNDO/REDO

21

start-transaction T1
write-item T1, D, 10, 20
commit T1
checkpoint
start-transaction T4
write-item T4, B, 10, 20
write-item T4, A, 5, 10
commit T4
start-transaction T2
write-item T2, B, 20, 15
start-transaction T3
write-item T3, A, 10, 30
write-item T2, D, 20, 25
CRASH

T1

T4

T2

T3

crashcheckpoint

NO-UNDO
REDO: T4

22

start-transaction T1
write-item T1, D, 10, 20
commit T1
checkpoint
start-transaction T4
write-item T4, B, 10, 20
write-item T4, A, 5, 10
commit T4
start-transaction T2
commit T5
write-item T2, B, 20, 15
start-transaction T3
write-item T3, A, 10, 30
write-item T2, D, 20, 25
CRASH

T1

T4

T2

T3

crashcheckpoint

Start-transaction T5
write-item T5, E, 10, 15

T5

23

Recovery with deferred update

• Algorithm:

- Use two lists: a list with active transactions
and a list with committed transactions since
the last checkpoint.

- REDO all write operations (write-item) of
all committed transactions in the order they
appear in the log.

24

Recovery with immediate update - 1

1. It is required that all updates are written to
disk before commit.

• No need to redo committed transactions

• Need to remove results of operations from
non-committed transactions

• UNDO/NO-REDO

25

start-transaction T1
write-item T1, D, 10, 20
commit T1
checkpoint
start-transaction T4
write-item T4, B, 10, 20
write-item T4, A, 5, 10
commit T4
start-transaction T2
write-item T2, B, 20, 15
start-transaction T3
write-item T3, A, 10, 30
write-item T2, D, 20, 25
CRASH

T1

T4

T2

T3

crashcheckpoint

NO-REDO
UNDO: T2, T3

26

• Algorithm:

- Use two lists: a list with active transactions
and a list with committed transactions since
the last checkpoint.

- Take away (UNDO) all results of all write
operations (write-item) of all active
transactions in the reverse order in which
they appear in the log.

Recovery with immediate update - 1

27

2. No requirement that all updates are written
to disk before commit.

• We need to redo the operations of
committed transactions for which all results
have not been written to the disk.

• Need to remove results of operations from
non-committed transactions

• UNDO/REDO

Recovery with immediate update - 2

28

start-transaction T1
write-item T1, D, 10, 20
commit T1
checkpoint
start-transaction T4
write-item T4, B, 10, 20
write-item T4, A, 5, 10
commit T4
start-transaction T2
write-item T2, B, 20, 15
start-transaction T3
write-item T3, A, 10, 30
write-item T2, D, 20, 25
CRASH

T1

T4

T2

T3

crashcheckpoint

UNDO: T2, T3
REDO: T4

29

• Algorithm:
- Use two lists: a list with active transactions and a

list with committed transactions since the last
checkpoint.

- Take away (UNDO) all results of all write
operations (write-item) of all active transactions in
the reverse order in which they appear in the log.

- REDO all write operations (write-item) of all
committed transactions in the order they appear in
the log.

Recovery with immediate update - 2

30

Comparison

• Deferred update
– NO-UNDO/REDO

• Immediate update 1
– UNDO/NO-REDO

31

Comparison

• Deferred update
– NO-UNDO/REDO

– Requires large buffer space (pinned blocks in
cache)

• Immediate update 2
– UNDO/REDO

– Blocks can be written to disk at any time (flush
the cache)

32

Comparison

• Immediate update 1
– UNDO/NO-REDO

– Required to write to the database latest at
commit

• Immediate update 2
– UNDO/REDO

– Can wait to write to the database (e.g. until
checkpoint)

33

Shadow paging

• Database size is n blocks

• current directory: i:th element points to i:th
block on disk

34

Shadow paging

• When a transaction starts:
– Copy current directory to a shadow directory

– Save the shadow directory on disk

– The shadow directory is not modified during
the transaction

– write-item: a new copy of the block is saved,
but the old block is NOT overwritten.

– commit: take away the shadow directory

35

Shadow paging
Current directory Shadow directory

1

2
3

4

5

6

1

2

3

4

5

6

36

Shadow paging
Current directory Shadow directory

1

2
3

4

5

6

1

2

3

4

5

6

37

Shadow paging
Current directory Shadow directory

1

2
3

4

5

6

1

2

3

4

5

6

Write-item --> block 5

New 5

38

Shadow paging

• Recovery: use the shadow directory

• Advantages:
– Single user system does not need logging

– NO-UNDO/NO-REDO

• Disadvantages:
– Blocks can be moved on the disk

– garbage collection

